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PREFACE

This book presents original studies on the leading edge of linear algebra. Each chap-

ter has been carefully selected in an attempt to present substantial research results across a

broad spectrum. The main goal of Chapter One is to define and investigate the restricted

generalized inverses corresponding to minimization of constrained quadratic form. As

stated in Chapter Two, in systems and control theory, Linear Time Invariant (LTI) descrip-

tor (Differential-Algebraic) systems are intimately related to the matrix pencil theory. A

review of the most interesting properties of the Projective Equivalence and the Extended

Hermite Equivalence classes is presented in the chapter. New determinantal representa-

tions of generalized inverse matrices based on their limit representations are introduced in

Chapter Three. Using the obtained analogues of the adjoint matrix, Cramer’s rules for the

least squares solution with the minimum norm and for the Drazin inverse solution of sin-

gular linear systems have been obtained in the chapter. In Chapter Four, a very interesting

application of linear algebra of commutative rings to systems theory, is explored. Chap-

ter Five gives a comprehensive investigation to behaviors of a general Hermitian quadratic

matrix-valued function by using ranks and inertias of matrices. In Chapter Six, the theory of

triangular matrices (tables) is introduced. The main ”characters” of the chapter are special

triangular tables (which will be called triangular matrices) and their functions paradetermi-

nants and parapermanents. The aim of Chapter Seven is to present the latest developments

in iterative methods for solving linear matrix equations. The problems of existence of com-

mon eigenvectors and simultaneous triangularization of a pair of matrices over a principal

ideal domain with quadratic minimal polynomials are investigated in Chapter Eight. Two

approaches to define a noncommutative determinant (a determinant of a matrix with non-

commutative elements) are considered in Chapter Nine. The last, Chapter 10, is an example

of how the methods of linear algebra are used in natural sciences, particularly in chemistry.

In this chapter, it is shown that in a First Order Chemical Kinetics Mechanisms matrix,

all columns add to zero, all the diagonal elements are non-positive and all the other ma-

trix entries are non-negative. As a result of this particular structure, the Gershgorin Circles

Theorem can be applied to show that all the eigenvalues are negative or zero.

Minimization of a quadratic form 〈x, Tx〉 + 〈p, x〉 + a under constraints defined by

a linear system is a common optimization problem. In Chapter 1, it is assumed that the
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operator T is symmetric positive definite or positive semidefinite. Several extensions to

different sets of linear matrix constraints are investigated. Solutions of this problem may

be given using the Moore-Penrose inverse and/or the Drazin inverse. In addition, several

new classes of generalized inverses are defined minimizing the seminorm defined by the

quadratic forms, depending on the matrix equation that is used as a constraint.

A number of possibilities for further investigation are considered.

In systems and control theory, Linear Time Invariant (LTI) descriptor (Differential-

Algebraic) systems are intimately related to the matrix pencil theory. Actually, a large

number of systems are reduced to the study of differential (difference) systems S (F,G) of

the form:

S (F,G) : Fẋ(t) = Gx(t) (or the dual Fx = Gẋ(t)) ,

and

S (F,G) : Fxk+1 = Gxk (or the dual Fxk = Gxk+1) , F, G ∈ C
m×n

and their properties can be characterized by the homogeneous pencil sF − ŝG. An essential

problem in matrix pencil theory is the study of invariants of sF−ŝG under the bilinear strict

equivalence. This problem is equivalent to the study of complete Projective Equivalence

(PE), EP , defined on the set Cr of complex homogeneous binary polynomials of fixed

homogeneous degree r. For a f (s, ŝ) ∈ Cr, the study of invariants of the PE class EP is

reduced to a study of invariants of matrices of the set C
k×2 (for k > 3 with all 2×2-minors

non-zero) under the Extended Hermite Equivalence (EHE), Erh. In Chapter 2, the authors

present a review of the most interesting properties of the PE and the EHE classes. Moreover,

the appropriate projective transformation d ∈ RGL (1,C/R) is provided analytically ([1]).

By a generalized inverse of a given matrix, the authors mean a matrix that exists for a

larger class of matrices than the nonsingular matrices, that has some of the properties of the

usual inverse, and that agrees with inverse when given matrix happens to be nonsingular. In

theory, there are many different generalized inverses that exist. The authors shall consider

the Moore Penrose, weighted Moore-Penrose, Drazin and weighted Drazin inverses.

New determinantal representations of these generalized inverse based on their limit rep-

resentations are introduced in Chapter 3. Application of this new method allows us to obtain

analogues classical adjoint matrix. Using the obtained analogues of the adjoint matrix, the

authors get Cramer’s rules for the least squares solution with the minimum norm and for the

Drazin inverse solution of singular linear systems. Cramer’s rules for the minimum norm

least squares solutions and the Drazin inverse solutions of the matrix equations AX = D,

XB = D and AXB = D are also obtained, where A, B can be singular matrices of

appropriate size. Finally, the authors derive determinantal representations of solutions of

the differential matrix equations, X′ + AX = B and X
′ + XA = B, where the matrix A

is singular.

Many physical systems in science and engineering can be described at time t in terms

of an n-dimensional state vector x(t) and an m-dimensional input vector u(t), governed by

an evolution equation of the form x′(t) = A · x(t) + B · u(t), if the time is continuous, or

x(t+1) = A ·x(t)+B ·u(t) in the discrete case. Thus, the system is completely described

by the pair of matrices (A,B) of sizes n× n and n×m respectively.

In two instances feedback is used to modify the structure of a given system (A,B): first,

A can be replaced by A + BF , with some characteristic polynomial that ensures stability
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of the new system (A+BF,B); and second, combining changes of bases with a feedback

action A 7→ A+ BF one obtains an equivalent system with a simpler structure.

Given a system (A,B), let (A,B) denote the set of states reachable at finite time when

starting with initial condition x(0) = 0 and varying u(t), i.e., (A,B) is the right image of

the matrix [B|AB|A2B| · · · ]. Also, let Pols(A,B) denote the set of characteristic polyno-

mials of all possible matrices A+BF , as F varies.

Classically, (A,B) have their entries in the field of real or complex numbers, but the

concept of discrete-time system is generalized to matrix pairs with coefficients in an arbi-

trary commutative ring R. Therefore, techniques from Linear Algebra over commutative

rings are needed.

In Chapter 4, the following problems are studied and solved when R is a commutative

von Neumann regular ring:

• A canonical form is obtained for the feedback equivalence of systems (combination

of basis changes with a feedback action).

• Given a system (A,B), it is proved that there exist a matrix F and a vector u such

that the single-input system (A + BF,Bu) has the same reachable states and the

same assignable polynomials as the original system, i.e. (A + BF,Bu) = (A,B)

and Pols(A+BF,Bu) = Pols(A,B).

Chapter 5 gives a comprehensive investigation to behaviors of a general Hermitian

quadratic matrix-valued function

φ(X) = (AXB +C )M(AXB +C)∗ +D

by using ranks and inertias of matrices. The author first establishes a group of analytical

formulas for calculating the global maximal and minimal ranks and inertias of φ(X). Based

on the formulas, the author derives necessary and sufficient conditions for φ(X) to be a

positive definite, positive semi-definite, negative definite, negative semi-definite function,

respectively, and then solves two optimization problems of finding two matrices X̂ or X̃
such that φ(X) < φ(X̂) and φ(X) 4 φ(X̃) hold for all X , respectively. As extensions,

the author considers definiteness and optimization problems in the Löwner sense of the

following two types of multiple Hermitian quadratic matrix-valued function

φ(X1, . . . , Xk ) =

(
k∑

i=1

AiXiBi +C

)
M

(
k∑

i=1

AiXiBi +C

)∗
+D,

ψ(X1, . . . , Xk ) =

k∑

i=1

(AiXiBi +Ci )Mi(AiXiBi +Ci )∗ +D.

Some open problems on algebraic properties of these matrix-valued functions are men-

tioned at the end of Chapter 5.

In Chapter 6, the author considers elements of linear algebra based on triangular tables

with entries in some number field and their functions, analogical to the classical notions of

a matrix, determinant and permanent. Some properties are investigated and applications in

various areas of mathematics are given.
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The aim of Chapter 7 is to present the latest developments in iterative methods for solv-

ing linear matrix equations. The iterative methods are obtained by extending the methods

presented to solve the linear system Ax = b. Numerical examples are investigated to con-

firm the efficiency of the methods.

The problems of existence of common eigenvectors and simultaneous triangularization

of a pair of matrices over a principal ideal domain with quadratic minimal polynomials are

investigated in Chapter 8. The necessary and sufficient conditions of simultaneous trian-

gularization of a pair of matrices with quadratic minimal polynomials are obtained. As a

result, the approach offered provides the necessary and sufficient conditions of simultane-

ous triangularization of pairs of idempotent matrices and pairs of involutory matrices over

a principal ideal domain.

Since product of quaternions is noncommutative, there is a problem how to determine

a determinant of a matrix with noncommutative elements (it’s called a noncommutative de-

terminant). The authors consider two approaches to define a noncommutative determinant.

Primarily, there are row – column determinants that are an extension of the classical def-

inition of the determinant; however, the authors assume predetermined order of elements

in each of the terms of the determinant. In Chapter 9, the authors extend the concept of

an immanant (permanent, determinant) to a split quaternion algebra using methods of the

theory of the row and column determinants.

Properties of the determinant of a Hermitian matrix are established. Based on these

properties, analogs of the classical adjont matrix over a quaternion skew field have been

obtained. As a result, the authors have a solution of a system of linear equations over a

quaternion division algebra according to Cramer’s rule by using row–column determinants.

Quasideterminants appeared from the analysis of the procedure of a matrix inversion.

By using quasideterminants, solving of a system of linear equations over a quaternion divi-

sion algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quasidetermi-

nants is that the authors have not one determinant of a quadratic matrix of order n with

noncommutative entries, but certain set (there are n2 quasideterminants, n row determi-

nants, and n column determinants). The authors have obtained a relation of row-column

determinants with quasideterminants of a matrix over a quaternion division algebra.

First order chemical reaction mechanisms are modeled through Ordinary Differential

Equations (O.D.E.) systems of the form: , being the chemical species concentrations vector,

its time derivative, and the associated system matrix.

A typical example of these reactions, which involves two species, is the Mutarotation

of Glucose, which has a corresponding matrix with a null eigenvalue whereas the other one

is negative.

A very simple example with three chemical compoundsis grape juice, when it is con-

verted into wine and then transformed into vinegar. A more complicated example,also

involving three species, is the adsorption of Carbon Dioxide over Platinum surfaces. Al-

though, in these examples the chemical mechanisms are very different, in both cases the

O.D.E. system matrix has two negative eigenvalues and the other one is zero. Consequently,

in all these cases that involve two or three chemical species, solutions show a weak stability

(i.e., they are stable but not asymptotically). This fact implies that small errors due to mea-

surements in the initial concentrations will remain bounded, but they do not tend to vanish
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as the reaction proceeds.

In order to know if these results can be extended or not to other chemical mechanisms,

a possible general result is studied through an inverse modeling approach, like in previous

papers. For this purpose, theoretical mechanisms involving two or more species are pro-

posed and a general type of matrices - so-called First Order Chemical Kinetics Mechanisms

(F.O.C.K.M.) matrices - is studied from the eigenvalues and eigenvectors view point.

Chapter 10 shows that in an F.O.C.K.M. matrix all columns add to zero, all the diagonal

elements are non-positive and all the other matrix entries are non-negative. Because of this

particular structure, the Gershgorin Circles Theorem can be applied to show that all the

eigenvalues are negative or zero. Moreover, it can be proved that in the case of the null

eigenvalues - under certain conditions - algebraic and geometric multiplicities give the same

number.

As an application of these results, several conclusions about the stability of the O.D.E.

solutions are obtained for these chemical reactions, and its consequences on the propagation

of concentrations and/or surface concentration measurement errors, are analyzed.
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Chapter 1

MINIMIZATION OF QUADRATIC FORMS

AND GENERALIZED INVERSES

Predrag S. Stanimirović1,∗, Dimitrios Pappas2,† and Vasilios N. Katsikis3,‡

1University of Niš, Faculty of Sciences and Mathematics, Niš, Serbia
2Athens University of Economics and Business

Department of Statistics, Athens, Greece
3National and Kapodistrian University of Athens, Department of Economics

Division of Mathematics and Informatics, Athens, Greece

Abstract

Minimization of a quadratic form 〈x, Tx〉 + 〈p, x〉 + a under constraints defined by

a linear system is a common optimization problem. It is assumed that the operator T
is symmetric positive definite or positive semidefinite. Several extensions to different

sets of linear matrix constraints are investigated. Solutions of this problem may be

given using the Moore-Penrose inverse and/or the Drazin inverse. In addition, several

new classes of generalized inverses are defined minimizing the seminorm defined by

the quadratic forms, depending on the matrix equation that is used as a constraint.

A number of possibilities for further investigation are considered.

Keywords: Quadratic functional, quadratic optimization, generalized inverse, Moore-

Penrose inverse, Drazin inverse, outer inverse, system of linear equations, matrix equation,

generalized inverse solution, Drazin inverse solution

AMS Subject Classification: 90C20, 15A09, 15A24, 11E04, 47N10

1. Introduction

It is necessary to mention several common and usual notations. By R
m×n (resp. C

m×n)

we denote the space of all real (resp. complex) matrices of dimension m × n. If A ∈

∗E-mail address: pecko@pmf.ni.ac.rs
†E-mail address: pappdimitris@gmail.com
‡E-mail address: vaskatsikis@econ.uoa.gr
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2 Predrag S. Stanimirović, Dimitrios Pappas and Vasilios N. Katsikis

R
m×n (resp. C

m×n), by AT ∈ R
n×m (resp. A∗ ∈ R

n×m) is denoted the transpose (resp.

conjugate and transpose) matrix of A. As it is usual, by N (A) we denote the null-space of

A, by R(A) the range of A, and ind(A) will denote the index of the matrix A.

1.1. Quadratic Functions, Optimization and Quadratic Forms

Definition 1.1. A square matrix A ∈ Cn×n (resp. A ∈ Rn×n) is:

1) Hermitian (Symmetric) matrix if A∗ = A (AT = A),

2) normal, if A∗A = AA∗ (ATA = AAT ),

3) lower-triangular, if aij = 0 for i < j,

4) upper-triangular, if aij = 0 for i > j,

5) positive semi-definite, if Re (x∗Ax) ≥ 0 for all x ∈ C
n×1. Additionally, if it holds

Re (x∗Ax) > 0 for all x ∈ Cn×1 \ {0}, then the matrix A is positive definite.

6) Unitary (resp. orthogonal) matrix A is a square matrix whose inverse is equal to its

conjugate transpose (resp. transpose), A−1 = A∗ (resp. A−1 = AT ).

Definition 1.2. Let A ∈ C
m×n. A real or complex scalar λ which satisfies the following

equation

Ax = λx, i.e., (A − λI)x = 0,

is called an eigenvalue of A, and x is called an eigenvector of A corresponding to λ.

The eigenvalues and eigenvectors of a matrix play a very important role in matrix theory.

They represent a tool which enables to understand the structure of a matrix. For example,

if a given square matrix of complex numbers is self-adjoint, then there exist basis of C
m

and Cn, consisting of distinct eigenvectors of A, with respect to which the matrix A can

be represented as a diagonal matrix. But, in the general case, not every matrix has enough

distinct eigenvectors to enable its diagonal decomposition. The following definition, given

as a generalization of the previous one, is useful to resolve this problem.

Definition 1.3. Let A ∈ C
m×n and λ is an eigenvalue of A. A vector x is called generalized

eigenvector of A of grade p corresponding to λ, or λ-vector of A of grade p, if it satisfies

the following equation

(A− λI)px = 0.

Namely, for each square matrix there exists a basis composed of generalized eigenvec-

tors with respect to which, a matrix can be represented in the Jordan form. Corresponding

statement is stated in the following proposition.

Proposition 1.1. [1] (The Jordan decomposition). Let the matrix A ∈ Cn×n has p distinct

eigenvalues {λ1, λ2, . . . , λp}. Then A is similar to a block diagonal matrix J with Jordan

blocks on its diagonal, i.e., there exists a nonsingular matrix P which satisfies

AP = PJ =











Jk1
(λ1) 0 . . . 0

0 Jk2
(λ2) . . . 0

...
...

. . .
...

0 0 . . . Jk(λp)











,
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where the Jordan blocks are defined by

Jki
(λi) =











λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
. . .

...

0 0 . . . λi 1











and the matrix J is unique up to a rearrangement of its blocks.

The following Proposition 1.2 gives us an alternative way to obtain even simpler decom-

position of the matrix A, than the one given with the Jordan decomposition, but with respect

to a different basis of C
n. This decomposition is known as the Singular Value Decompo-

sition (SVD shortly) and it is based on the notion of singular values, given in Definition

1.4.

Definition 1.4. Let A ∈ C
m×n and {λ1, . . . , λp} be the nonzero eigenvalues of AA∗. The

singular values of A, denoted by σi(A), i = 1, . . . , p are defined by

σi(A) =
√

λi, i = 1, . . . , p.

Proposition 1.2. (Singular value decomposition) [1] Let A ∈ R
m×n be a matrix with

singular values {σ1, . . . , σr}. Then there exist orthogonal matrices U ∈ Rm×m and V ∈
R

n×n such that

A = UΣV T ,

where Σ is a nonsquare diagonal matrix

Σ =



















σ1
... 0

. . .
... 0

σr
...

. . . . . . . . . . . . . . .

0
... 0



















, σ1 ≥ σ2 ≥ · · · ≥ σr.

A square matrix T of the order n is symmetric and positive semidefinite (abbreviated

SPSD and denoted by T � 0) if

vTTv ≥ 0 for all v ∈ R
n.

T is symmetric and positive definite (abbreviated SPD and denoted by T � 0) if

vTTv > 0 for all v ∈ R
n, v 6= 0.

Recall that a symmetric matrix T is positive definite if and only if all its eigenvalues are

nonnegative. The corresponding minimization problem, stated originally in linear algebra

and frequently used in many scientific areas, is to minimize the quadratic form

1

2
xTTx + pTx + a =

1

2
〈x, Tx〉+ pTx + a (1.1)
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4 Predrag S. Stanimirović, Dimitrios Pappas and Vasilios N. Katsikis

with respect to unknown vector x ∈ R
n. Here T is a square positive definite matrix of the

order n, p ∈ Rn is a vector of length n and a is a real scalar. Optimization problem (1.1) is

called an unconstrained quadratic optimization problem.

Let x, p, a ∈ R
n are real vectors and T is a symmetric n × n matrix. The linearly

constrained quadratic programming problem can be formulated as follows (see, for exam-

ple, [2]):

Minimize the goal function (1.1) subject to one or more inequality and/or equality con-

straints defined by two n × n matrices A, E and two n-dimensional vectors b, d:

Ax ≤ b

Ex = d.

Notice that in the general Quadratic Programming model (QP model shortly) we can

always presume that T is a symmetric matrix. Indeed, because

xT Tx =
1

2
xT (T + T T )x.

it is possible to replace T by the symmetric matrix T̃ = 1
2(T + T T ).

Proposition 1.3. An arbitrary symmetric matrix T is diagonalizable in the general form

T = RDRT , where R is an orthonormal matrix, the columns of R are an orthonormal

basis of eigenvectors of T , and D is a diagonal matrix of the eigenvalues of T .

Proposition 1.4. If T ∈ Rn×n is symmetric PSD matrix, then the following statements are

equivalent:

1) T = MMT , for an appropriate matrix M of the order M ∈ Rn×k , k ≥ 1.

2) vTTv ≥ 0 for all v ∈ Rn, v 6= 0.

3) There exist vectors vi, i = 1, . . . , n ∈ R
k (for some k ≥ 1) such that Tij = vT

i vj for all

i, j = 1, . . . , n. The vectors vi, i = 1, . . . , n, are called a Gram representation of T .

4) All principal minors of T are non-negative.

Proposition 1.5. Let T ∈ C
n×n is symmetric. Then T � 0 and it is nonsingular if and only

if T � 0.

Quadratic forms have played a significant role in the history of mathematics in both

the finite and infinite dimensional cases. A number of authors have studied problems on

minimizing (or maximizing) quadratic forms under various constraints such as vectors con-

strained to lie within the unit simplex (see Broom [3]), and the minimization of a more

general case of a quadratic form defined in a finite-dimensional real Euclidean space under

linear constraints (see e.g. La Cruz [4], Manherz and Hakimi [5]), with many applica-

tions in network analysis and control theory (for more on this subject, see also [6,7]). In a

classical book on optimization theory, Luenberger [8], presented similar optimization prob-

lems for both finite and infinite dimensions. Quadratic problems are very important cases

in both constrained and non-constrained optimization theory, and they find application in

many different areas. First of all, quadratic forms are simple to be described and analyzed,

and thus by their investigation, it is convenient to explain the convergence characteristics
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Minimization of Quadratic Forms and Generalized Inverses 5

of the iterative optimization methods. The conjugate gradient methods invariably are in-

vented and analyzed for the purely quadratic unconstrained problem, and then extended, by

approximation, to more general problems, etc.

Applicability of the quadratic forms can be observed in other practical areas such as:

network analysis and control theory [4,5,9], the Asset Pricing Theory and Arbitrage Pricing

Theory [10], etc.

1.2. Short Overview of Generalized Inverses and Underlying Results

As previously mentioned, the main idea of defining generalized inverses originates from

the need to solve the problem of finding a solution of the following system

Ax = b, (1.2)

where A ∈ C
m×n and b ∈ C

m.

Definition 1.5. For a given matrix A ∈ C
n×n, the inverse of the matrix A is a square matrix

A−1 such that it satisfies the following equalities

AA−1 = I and A−1A = I.

Proposition 1.6. A square matrix A ∈ Cn×n has a unique inverse if and only if det(A) 6= 0,

in which case we say that the matrix A is nonsingular matrix.

Remark 1.1. In order to distinguish between generalized inverses, the inverse of a matrix

defined with Definition 1.5 will be called the ordinary inverse.

In the case when the matrix A from the system (1.2) is nonsingular, the vector

x = A−1b,

provides a solution of the system (1.2). However, many problems that usually arise in

practice, reduce to a problem of the type (1.2), where the matrix A is singular, and moreover,

in many cases it is not even a square matrix.

1.2.1. The Moore-Penrose Inverse

Let A ∈ Cm×n. The matrix X ∈ Cn×m satisfying the conditions

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA

is called the Moore-Penrose inverse of A and denoted by A†.

It is easy to see that AA† is the orthogonal projection of H onto R(A), denoted by PA,

and that A†A is the orthogonal projection of H onto R(A∗) noted by PA∗ . It is well known

that R(A†) = R(A∗).

The set of matrices obeying the equations defined by the numbers contained in a se-

quence S from the set {1, 2, 3, 4} is denoted by A{S}. A matrix from A{S} is called an

S-inverse of A. An arbitrary S-inverse of A of A is denoted by A(S).
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If A commutes with A†, then A is called an EP matrix. EP matrices constitute a wide

class of matrices which includes the self adjoint matrices, the normal matrices and the

invertible matrices. Since the symmetric matrices are EP, the positive matrix T in the

quadratic form studied in this work is EP. It is easy to see that for EP matrices we have

the following:

A is EP ⇔ R(A) = R(A∗) ⇔ N (A) = N (A∗) ⇔ R(A)⊕N (A) = H. (1.3)

Let A be EP. Then, A has a matrix decomposition with respect to the orthogonal decompo-

sition H = R(A)⊕N (A):

T =

[

A1 0
0 0

]

:

[

R(A)
N (A)

]

→

[

R(A)
N (A)

]

where the operator A1 : R(T ) → R(T ) is invertible. Moreover,

A† =

[

A−1
1 0

0 0

]

:

[

R(A)
N (A)

]

→

[

R(A)
N (A)

]

.

Lemma 1.1. Let A ∈ Cm×n be an arbitrary matrix. Then the following properties are

valid.

1) (A†)† = A, (A†)∗ = (A∗)†;

2) (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†;

3) A†AA∗ = A∗ = A∗AA†;

4) A† = (A∗A)†A∗ = A∗(AA∗)†;

5) N (AA†) = N (A†) = N (A∗) = R(A)

6) R(AA∗) = R(AA(1)) = R(A), rank(AA(1)) = rank(A(1)A) = rank(A);

7) AA† = PR(A∗),N (A) and A†A = PR(A),N (A∗).

Lemma 1.2. Let A ∈ Cm×n be an arbitrary matrix. Then the matrix A can be written in

the following way:

A ∼

[

A1 0
0 0

]

:

[

R(A∗)
N (A)

]

→

[

R(A)
N (A∗)

]

, (1.4)

where A1 is invertible. Hence,

A† ∼

[

A−1
1 0
0 0

]

:

[

R(A)

N (A∗)

]

→

[

R(A∗)

N (A)

]

.

Let us consider the equation Ax = b, A ∈ B(H), where A is singular. If b /∈ R(A),

then the equation has no solution. Therefore, instead of trying to solve the system of linear

equations ‖Ax−b‖ = 0, we may look for a vector u that minimizes the norm ‖Ax − b‖.

Note that the vector u is unique. In this case we consider the equation Tx = PR(A)b, where

PR(A) is the orthogonal projection on R(A).

If the system (1.2) is such that b /∈ R(A), then we search for an approximate solution

of the system (1.2) by trying to find a vector x for which the norm of the vector Ax − b is

minimal.
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Definition 1.6. Let A ∈ C
m×n and b ∈ C

m. A vector x̂, which satisfies the equality

‖Ax̂ − b‖2 = min
x∈Cn

‖Ax − b‖2. (1.5)

is called a least-squares solution of the system (1.2).

The next lemma gives a characterization of all least-squares solutions of the system (1.2).

Lemma 1.3. The vector x is a least-squares solution of the system (1.2) if and only if x is

a solution of the normal equation, defined by

A∗Ax = A∗b. (1.6)

The following proposition from [11] shows that ‖Ax − b‖ is minimized by choosing

x = A(1,3)b, thus establishing a relation between the {1, 3}-inverses and the least-squares

solutions of the system (1.2).

Proposition 1.7. [11] Let A ∈ C
m×n, b ∈ C

m. Then ‖Ax − b‖ is smallest when x =
A(1,3)b, where A(1,3) ∈ A{1, 3}. Conversely, if X ∈ Cn×m has the property that, for all b,

the norm ‖Ax − b‖ is smallest when x = Xb, then X ∈ A{1, 3}.

Since A(1,3)-inverse of a matrix is not unique, a system of linear equations can have

many least-squares solutions. However, it is shown that among all least-squares solutions

of a given system of linear equations, there exists only one such solution of minimum norm.

Definition 1.7. Let A ∈ Cm×n and b ∈ Cm. A vector x̂, which satisfies the equality

‖x̂‖2 = min
x∈Cn

‖x‖2. (1.7)

is called a minimum-norm solution of the system (1.2).

The next proposition establishes a relation between {1, 4}-inverses and the minimum-

norm solutions of the system (1.2).

Proposition 1.8. [11] Let A ∈ C
m×n, b ∈ C

m. If Ax = b has a solution for x, the

unique solution for which ‖x‖ is smallest is given by x = A(1,4)b, where A(1,4) ∈ A{1, 4}.

Conversely, if X ∈ C
n×m is such that, whenever Ax = b has a solution, x = Xb is the

solution of minimum-norm, then X ∈ A{1, 4}.

Joining the results from Proposition 1.7 and Proposition 1.8 we are coming to the most

important property of the Moore-Penrose inverse.

Corollary 1.1. [12] Let A ∈ Cm×n, b ∈ Cm. Then, among the least-squares solutions

of Ax = b, A†b is the one of minimum-norm. Conversely, if X ∈ C
n×m has the property

that, for all b, the vector Xb is the minimum-norm least-squares solution of Ax = b, then

X = A†.

The next proposition, characterizes the set of all least-squares solutions of a given sys-

tem of linear equations.
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Proposition 1.9. [13,14] If R(A) is closed then the set S of all least-squares solutions of

the system Ax = b is given by

S = A†b ⊕N (A) = {A†b + (I − A†A)y : y ∈ H},

where N (A) denotes the null space of A.

The following two propositions can be found in Groetsch [15] and hold for operators

and matrices:

Proposition 1.10. Let A ∈ B(H) and b ∈ H. Then, for u ∈ H, the following are equiva-

lent:

(i) Au = PR(A)b

(ii) ‖Au − b‖ ≤‖ Ax − b‖, ∀x ∈ H
(iii) A∗Au = A∗b.

Let B = {u ∈ H|T ∗Tu = T ∗b}. This set of solutions is closed and convex, therefore,

it has a unique vector with minimal norm. In the literature, Groetsch [15], B is known as

the set of the generalized solutions.

Proposition 1.11. Let A ∈ B(H), b ∈ H, and the equation Ax = b. Then, if A† is the

generalized inverse of A, we have that A†b = u, where u is the minimal norm solution.

This property has an application in the problem of minimizing a symmetric positive

definite quadratic form 〈x, Tx〉 subject to linear constraints, assumed consistent.

Another approach to the same problem is the use of a T (1,3) inverse. In this case T (1,3)b

is a least squares solution for every b ∈ H. The following Proposition can be found in [11],

Chapter 3.

Proposition 1.12. [11] Let T ∈ B(H) with closed range and b ∈ H. A vector x is a least

squares solution of the equation Tx = b iff Tx = PR(T )b = TT (1,3)b.

Then, the general least squares solution is

x = T (1,3)b + (I − T (1,3)T )y,

where y is an arbitrary vector in H.

A vector x is a least-squares solution of Tx = b if and only if x is a solution of the

normal equation T ∗Tx = T ∗b. Therefore, the least squares solutions set, defined in Propo-

sition 1.10, is identical with the set defined in Proposition 1.12. In addition, we will also

make use of a T (1,4) inverse. In this case T (1,4)b is the minimal norm solution of the equa-

tion Tx = b for every b ∈ R(T ). The following Proposition can also be found in [11],

Chapter 3.

Proposition 1.13. [11] Let T ∈ B(H) with closed range and b ∈ H. If the equation

Tx = b has a solution for x, the unique solution for which ‖x‖ is smallest is given by

x = T (1,4)b.
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In the rest of this section we will also need to present the notion as well as the basic

properties of the weighted Moore-Penrose inverse of a matrix A ∈ Cm×n with respect to

two Hermitian positive definite matrices M ∈ C
m×m and N ∈ C

n×n denoted by X =
A†

M,N satisfying the following four equations (See [16] page 118, exercise 30, or [17]

section 3. For computational methods see e.g. [18], and for more on this subject, see [19,

20]):

AXA = A, XAX = X, (MAX)∗ = MAX, (NXA)∗ = NXA. (1.8)

It is also known (see e.g., [11]) that

A†
M,N = N− 1

2

(

M
1

2 AN− 1

2

)†
M

1

2 .

In this case, A†
M,Nb is the M -least squares solution of Ax = b which has minimal N -norm.

This notion can be extended in the case when M and N are positive semidefinite ma-

trices: in this case, X is a matrix such that Xb is a minimal N semi-norm, M -least squares

solution of Ax = b. Subsequently, X must satisfy four conditions from (1.8) (See [16]

page 118, exercises 31-34). When N is positive definite, then there exists a unique solution

for X .

Another result used in our work is that, wherever a square root of a positive operator A
is used, and since EP operators have index equal to 1, we have R(A) = R(A2) (see Ben

Israel [11], pages 156-157).

As mentioned above, a necessary condition for the existence of a bounded generalized

inverse is that the operator has closed range. Nevertheless, the range of the product of two

operators with closed range is not always closed. In Bouldin [21] an equivalent condition

is given. This condition is restated in Proposition 1.14.

Proposition 1.14. [21] Let A and B be operators with closed range, and let

Hi = N (A) ∩ (N (A) ∩ R(B))⊥ = N (A) ⊕R(B).

The angle between Hi and R(B) is positive if and only if AB has closed range.

A similar result can be found in Izumino [22], this time using orthogonal projections.

Proposition 1.15. [22] Let A and B be operators with closed range. Then, AB has closed

range if and only if A†ABB† has closed range.

We will use the above two results to prove the existence of the Moore- Penrose inverse

of appropriate operators which will be used in our work.

Another tool, used in this work, is the reverse order law for the Moore-Penrose in-

verses. In general, the reverse order law does not hold. Conditions which enable the reverse

order law are described in Proposition 1.16. This proposition is a restatement of a part of

Bouldin’s theorem [23] that holds for both operators and matrices.
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Proposition 1.16. Let A, B be bounded operators onH with closed range. Then the reverse

order low (AB)† = B†A† holds if and only if the following three conditions hold:

(i) The range of AB is closed,

(ii) A†A commutes with BB∗,

(iii) BB† commutes with A∗A.

A corollary of Proposition 1.14 is the following proposition that can be found in

Karanasios-Pappas [24] and we will use it in our case. We will denote by Lat T the set

of all closed subspaces of the underlying Hilbert space H invariant under T .

Proposition 1.17. Let A, T ∈ B(H) be two operators such that A is invertible and T has

closed range. Then

(TA)† = A−1T † if and only if R(T ) ∈ Lat (AA∗).

1.2.2. The Drazin Inverse

Apart from the Moore-Penrose inverse and A(i,j,k) inverses, a very useful kind of in-

verse, with properties analogous to the usual inverse, is the Drazin inverse. Let A ∈ Rn×n

and k = ind(A). The matrix X ∈ R
n×n satisfying the conditions

(1k) AkXA = Ak (2) XAX = X (5) AX = XA

is called the Drazin inverse of the matrix A and it is denoted by AD .

Proposition 1.18. If A is a matrix of index k, then the vector ADb is a solution of the

equation

Ak+1x = Akb, (1.9)

for all b, in which case the equation (1.9) and the vector ADb are respectively called the

general normal equation and the Drazin-inverse solution of the system Ax = b.

In the next lemma we give the main properties of the Drazin inverse.

Lemma 1.4. Let A ∈ Cn×n and p = ind(A). The following statements are valid:

1) AlXA = Al for all l ≥ p

2) R(Al) = R(Al+1), N (Al) = N (Al+1) and rank(Al) = rank(Al+1), for all l ≥ p.

Moreover, p is the smallest integer for which the equalities hold.

3) The matrix A can be written in the following way:

A ∼

[

A1 0
0 N

]

:

[

R(Ap)
N (Ap)

]

→

[

R(Ap)
N (Ap)

]

, (1.10)

where A1 is invertible, and N is nilpotent matrix. The Drazin inverse of A is defined

by

AD ∼

[

A−1
1 0
0 0

]

:

[

R(Ap)

N (Ap)

]

→

[

R(Ap)

N (Ap)

]

;
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4) for all λ 6= 0, a vector x is a λ−1-vector of AD of grade s if and only if it is a λ-vector

of A of grade s, and x is a 0-vector of AD if and only if it is a 0-vector of A (without

regard to grade).

It is important to note that the block form (1.10) of the matrix A can be easily obtained by

the Jordan decomposition of A.

Despite the spectral properties, the Drazin inverse, in some cases, it also provides a

solution of a given system of linear equations. Namely for A ∈ Cn×n and b ∈ Cn, as it was

shown in [16], ADb is a solution of the following system

Ax = b, where b ∈ R(Ap) , p = ind(A). (1.11)

and we call it the Drazin-inverse solution of the system (1.11). Also, since this is the only

case, when the Drazin-inverse provides a solution to the given system, we call the system

(1.11), a Drazin-consistent system.

The Drazin inverse has many applications in the theory of finite Markov chains as well

as in the study of differential equations and singular linear difference equations [16], cryp-

tography [25] etc.

An application of the Drazin inverse in solving a given system of linear equations natu-

rally arises from the minimal properties of the Drazin inverse. For this purpose, we present

main results from the paper [26], where corresponding results for the Drazin-inverse solu-

tion, to the ones presented for the Moore-Penrose inverse solution, are established.

Theorem 1.1. Let A ∈ C
n×n with p = ind(A). Then ADb is the unique solution in R(Ap)

of the system

Ap+1x = Apb. (1.12)

Theorem 1.2. Let A ∈ C
n×n, b ∈ C

n and p = ind(A). The set of all solutions of the

equation (1.12) is given by

x = ADb + N (Ap). (1.13)

Since (1.12) is analogous to (1.9), we shall call the solution (1.12) as the generalized normal

equations of (1.11).

Let A = PJP−1 be the Jordan decomposition of the matrix A. We denote ‖x‖P =
‖P−1x‖.

Theorem 1.3. [26] Let A ∈ Rn×n with p = ind(A). Then x̂ satisfies

‖b − Ax̂‖P = min
u∈N (A)+R(Ap−1)

‖b − Ax‖P

if and only if x̂ is the solution of the equation

Ap+1x = Apb, x ∈ N (A) + R(Ap−1).

Moreover, the Drazin-inverse solution x = ADb is the unique minimal P -norm solution of

the generalized normal equations (1.12).
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12 Predrag S. Stanimirović, Dimitrios Pappas and Vasilios N. Katsikis

Corollary 1.2. [26] Let A ∈ C
n×n, p = ind(A) and b ∈ R(A). Then the inequality

‖x‖P ≥ ‖ADb‖P holds for all solutions x of the system (1.12), i.e., ADb is the unique

minimum P -norm solution of the system of equations (1.12).

Lemma 1.5. [27] Let A ∈ Rn×n with ind(A) = k. Then the general solution of

Ax = b, b ∈ R(Ak), k = ind(A) (1.14)

is given by

x = ADb + Ak−1
(

I − ADA
)

z,

where z is an arbitrary vector. In particular, the minimal P-norm solution of (1.14) is

presented by xopt = ADb.

A unified representation theorem for the Drazin inverse was derived in [28]. This gen-

eral representation of the Drazin inverses leads to a number of specific expressions and

computational procedures for computing the Drazin inverse.

1.3. The A
(2)
T,S-Inverse

Recall that, for an arbitrary matrix A ∈ Cm×n, the set of all outer inverses (or also

called {2}-inverses) is defined by the following

A{2} = {X ∈ C
n×m : XAX = X}. (1.15)

With A{2}s we denote the set of all outer inverses of rank s and the symbol A(2) stands for

an arbitrary outer inverse of A.

Proposition 1.19. [11] Let A ∈ C
m×n
r , U is a subspace of C

n of dimension t ≤ r and V
is a subspace of Cm of dimension m− t, then A has a {2}-inverse X such that R(X) = U

and N (X) = V if and only if AU ⊕ V = C
m, in which case X is unique and it is denoted

by A
(2)
U,V .

Lemma 1.6. Let A ∈ C
m×n be an arbitrary matrix, U is a subspace of C

n and V is

a subspace of Cm such that AU ⊕ V = Cm. Then the matrix A can be written in the

following way:

A ∼

[

A1 0

0 A2

]

:

[

U

N (A
(2)
U,V A)

]

→

[

AU

V

]

, (1.16)

where A1 is invertible. Moreover,

A
(2)
U,V ∼

[

A−1
1 0

0 0

]

:

[

AU
V

]

→

[

U

N (A
(2)
U,V A)

]

.

The outer generalized inverse with prescribed range U and null-space V is a generalized

inverse of special interest in matrix theory. The reason of the importance of this inverse is

the fact that: the Moore-Penrose inverse A†, the weighted Moore-Penrose inverse A†
M,N ,

the Drazin inverse AD, the group inverse A#, the Bott-Duffin inverse A
(−1)
(L) and the gener-

alized Bott-Duffin inverse A
(+)
(L) ; are all {2}-generalized inverses of A with prescribed range

and null space.
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Lemma 1.7. Let A ∈ C
m×n
r and p = ind(A). Then the following representations are

valid:

1) A† = A
(2)
R(A∗),N (A∗)

,

2) A†
M,N = A

(2)
R(N−1A∗M ),N (N−1A∗M )

,

3) AD = A
(2)

R(Ak),N (Ak)
,

4) A# = A
(2)
R(A),N (A)

if and only if p = 1.

1.4. Semidefinite Programming

The source of main topic of this work is included in the so called semidefinite program-

ming. In order to clarify restated results, it is necessary to restate basic facts and notions.

The scalar (inner) product of two matrices A, B ∈ C
m×n is defined by

〈A, B〉 =

m
∑

i=1

n
∑

j=1

aijbij = Tr(AT B).

Frobenius norm of a matrix A is defined as ‖A‖F =
√

〈A, A〉.

The semidefinite programming (SDP) problem is the problem of optimizing a linear

function of a symmetric matrix subject to linear constraints. Also, it is assumed that the

matrix of variables is symmetric positive semidefinite. The unconstrained semidefinite op-

timization problem can be stated in the general form

minimize f(X)

subject to X � 0,
(1.17)

where f(X) : Rn×n → R is a convex and differentiable function over the cone of positive

semidefinite matrices. A constrained version of the problem (1.17) is called a semidefinite

program (SDP) if both the function f as well as the constraints are linear and possesses the

form
minimize f(X)

subject to hi(X) = 0, i ∈ I

X � 0.

(1.18)

Here, X belongs to the space of symmetric n × n matrices, denoted by Sn×n, each of the

functions hi is real-valued affine function on S
n×n and I denotes the set of indices.

The typical form of a semidefinite program is a minimization problem of the form

minimize 〈C, X〉

subject to 〈Aj, X〉=bj, j = 1, . . . , m

X � 0.

(1.19)

Here A1, . . . , Am∈S
n are given n×n symmetric matrices and b=

[

b1, . . . , bm

]T
∈R

m is a

given vector.
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The SDP problem has been studied extensively due to its practical applicability in var-

ious fields [29–31]. Various algorithms have been proposed for solving SDP, where the

interior point method is one of the efficient methods for SDP, and it possesses polyno-

mial complexity (see, for example, [29–32]). An algorithm for solving general large–scale

unconstrained semidefinite optimization problems efficiently is proposed in [33]. The algo-

rithm is based on a hybrid approach and combines Sparse approximate solutions to semidef-

inite programs, proposed by Hazan (2008), with a standard quasi-Newton algorithm.

Semidefinite programming theoretically subsumes other convex techniques such as lin-

ear, quadratic, and second-order cone programming.

In the present monograph, we are interested to solve some SDP problems whose solu-

tions are based on the usage of various classes of generalized inverses.

1.5. Organization of the Paper

The organization of the remainder of this work is the following. In the second section

we give an overview of notation and definitions and some known results, which are related

to our analysis. The third section is devoted to the T-restricted weighted Moore-Penrose

Inverse, which is introduced and investigated in [34,35]. The fourth section is presenting the

T -restricted weighted Drazin inverse of a matrix. Some possible generalizations of results

surveyed in sections 3 and 4 as well as opportunities for future research are presented in

Section 5. Finally we will end this work with several conclusions.

2. Overview of Known Results of Quadratic Optimization

and Preliminary Results

According to the minimality of the Frobenius norm of the pseudo-inverse [36], the

generalized inverse can be computed as a solution of a certain matrix-valued quadratic

convex programming problem with equality constraints. If m ≥ n then A† is a solution of

the following optimization problem (2.1) with respect to X ∈ Cn×m

minimize ‖X‖2
F

subject to A∗AX = A∗,
(2.1)

where ‖X‖F denotes the Frobenius norm of X . In the case m < n, if Y is a solution of the

following optimization problem (2.2) with respect to X ∈ Cm×n

minimize ‖X‖2
F

subject to AA∗X = A,
(2.2)

then A† = Y ∗.

An interesting usage of inner generalized inverses in constrained quadratic optimization

problems restricted by some linear constraints is investigated in [38]. For this purpose, D.J.

Evans introduced the restricted inverse defined in [38] as in the following proposition.
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Proposition 2.1. ( [38, Theorem 1]) Let A be positive semidefinite and C be singular. Then

the following constrained quadratic programming problem

min q(x) =
1

2
〈x, Tx〉+ 〈p, x〉 =

1

2
xTTx + pTx

s.t. CT x = d
(2.3)

has the solution given by

x̂ = (CT )(1)d − PN(CT )

(

PN(CT )TPN(CT )

)(1)
PN(CT )

[

p + T (CT )(1)d
]

.

If the constraint set CT x = d from (2.3) is considered in the particular form Ax = b,

required in (1.9), we obtain CT = A and d = b. In addition, we have that p = 0, so that

corresponding solution of the minimization problem, given by Proposition 2.1, is equal to

x̂ = A(1)b − PN(A)

(

PN(A)TPN(A)

)(1)
PN(A)T (A)(1)b. (2.4)

If the constraint set CT x = d from (2.3) is considered in the particular form Ak+1x =

Akb, required in (1.9), we obtain CT = Ak+1 and d = Akb. In addition, we have that

p = 0, so that the solution of the minimization problem, given by Proposition 2.1, is equal

to

x̂ = (Ak+1)(1)Akb − PN(Ak+1)(PN(Ak+1)TPN(Ak+1))
(1)PN(Ak+1)A(Ak+1)(1)Akb. (2.5)

Nevertheless, since the minimizing vector given by (2.4),(2.5) is derived using a {1}-

inverse, solutions (2.4),(2.5) are not of minimal norm, neither a least squares solution. The

solutions given by {1}-inverses are general solutions of a system of linear equations. So,

we do not expect that the minimizing value of Φ(x) using this kind of inverse will give

lower values than the ones given by the generalized inverse introduced in [39,40], which is

based on the usage of outer inverses.

The authors of the paper [41] were considered the minimization problem

Minimize F ∗RF, F ∈ C
M×m : F ∗Q = C. (2.6)

Here, R is an M×M Hermitian matrix, Q and C are M×n and m×n matrices respectively

satisfying m < M and n < M . In other words, main goal of the paper [41] is to find an

M × m minimizer of the quadratic form F ∗RF subject to the set of n linear constraints

included in the matrix constraint F ∗Q = C.

In applications where R may be assumed to be strictly positive definite and well-

conditioned, problem (2.6) has a unique solution derived in [42]:

F0 = R−1Q
(

Q∗R−1Q
)−1

C∗,

F ∗
0 RF0 =

(

Q∗R−1Q
)−1

.

In the general case, the matrix R is ill-conditioned or even exactly singular, a particular

minimizer of (2.6) is given by

F0 = (R + QPQ∗)† Q
(

Q∗ (R + QPQ∗)† Q
)−1

C∗,

F ∗
0 RF0 = C

(

(

Q∗ (R + QPQ∗)† Q
)−1

− In

)

C∗.
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where P is an arbitrary n × n positive definite matrix.

The constrained quadratic problem of the general form

minimize Φ(x) = 〈x, Tx〉+ 〈p, x〉+ a, (2.7)

subject to the constraint

x ∈ S, S = {x : x ∈ R
n, Ax = b} (2.8)

has been frequently investigated in the literature. It is assumed that a ∈ R, p is a given

vector and T is a positive definite or positive semi-definite real matrix or an operator acting

on a separable real Hilbert space.

One approach to solve the problem

minimize Φ(x), x ∈ S (2.9)

are the, so called, Penalty methods [8], which are actually based on the idea of approxi-

mating the original problem, to the problem of unconstrained optimization, and then using

respective methods in order to solve it.

Quadratic minimization under linear constraints has various applications in electrical

circuits, signal processing and linear estimation (see e.g. [5,43,44])

The fact that the unique solution of the problem (2.7) (without constraints) is also the

unique solution to the linear equation

Tx = p, (2.10)

and hence the quadratic minimization problem is equivalent to a linear equation problem,

motivates the idea of using generalized inverses as a possible methodology for finding the

solution of the problem. An application of the Moore-Penrose inverse for finding a solution

of the problem (2.7), where T is positive definite matrix, was presented by Manherz and

Hakimi [5]. The special case when p = 0 and a = 0, was investigated in [9]. The authors

in [35], generalized these results to positive operators acting on separable complex Hilbert

spaces, and then proposed a new approach for positive semi-definite operators, where the

minimization is considered for all vectors belonging to N (T )⊥. Dependence of the station-

ary points of Φ on perturbations of the operator T is studied in [45].

When the set S is nonempty, the solution of the problem (2.9) is given in [5]. Moreover,

a more general approach of the same problem when T is singular is examined in [46]

making use of {1, 3} and {1, 4} inverses.

Now, let us suppose that the set S is empty, then the problem (2.9) does not have a

solution. However, the practical problems that appear can result with a model given by (2.9),

such that the system Ax = b is not consistent. In this case, the constraint set S does not

have a solution, and consequently our problem does not have a solution. For that purpose,

in the present article we analyze different sets of constraints, which give approximation

to the original problem. This approach have led us to dependency between the solution

of the problem given by (2.9), and the Drazin inverse solution ADb of the system (2.8).

Complimentary Contributor Copy



Minimization of Quadratic Forms and Generalized Inverses 17

The special case when it is actually a solution of the original problem is also analyzed.

The main idea consists of finding a solution to the problem (2.7) such that minimizes the

vector Ax − b with respect to the P -norm, where P is the Jordan basis of the matrix A.

Consequently, instead of analyzing the constraint set S, it is possible to analyze the normal

Drazin equation of the system Ax = b:

SD = {x : x ∈ R
n, Ak+1x = Akb, k ≥ ind(A)}. (2.11)

In order to find an approximate solution of (2.9), in the present paper we solve the

problem by considering the following minimization problem

minimize Φ(x), x ∈ SD. (2.12)

Obviously the set SD is nonempty.

Several results on the problem that we will examine in this work are listed in the rest of

this section.

Let T be a symmetric positive definite matrix. Then, T can be written as T = UDU∗,

where U is unitary and D is diagonal. Let D
1

2 denote the positive solution of X2 = D, and

let D− 1

2 denote
(

D
1

2

)−1
, which exists since T is positive definite.

In order to have a more general idea of this problem we will at first examine it for the

infinite dimensional case and then we will consider matrices in the place of operators.

We will consider the case when the positive operator T is singular, that is, T is positive

semidefinite. In this case, since N (T ) 6= ∅, we have that 〈x, Tx〉 = 0, for all x ∈ N (T )

and so, the problem

minimize Φ0(x) = 〈x, Tx〉, x ∈ S

has many solutions when N (T ) ∩ S 6= ∅.

An approach to this problem in both the finite and infinite dimensional case would be

to look among the vectors x ∈ N (T )⊥ = R(T ∗) = R(T ) for a minimizing vector for

〈x, Tx〉. In other words, we will look for the minimum of 〈x, Tx〉 under the constraints

Ax = b, x ∈ R(T ).

Using the fact that T is an EP operator, we will make use of the first two conditions in

the following proposition that can be found in Drivaliaris et al [47]:

Proposition 2.2. [47] Let T ∈ B(H) with closed range. Then the following conditions are

equivalent:

(i) T is EP.

(ii) There exist Hilbert spaces K1 and L1, unitary U1 ∈ B(K1 ⊕ L1,H) and isomor-

phism A1 ∈ B(K1) such that

T = U1(A1 ⊕ 0)U∗
1 . (2.13)

(iii) There exist Hilbert spaces K2 and L2, U2 ∈ B(K2 ⊕ L2,H) isomorphism and

A2 ∈ B(K2) isomorphism such that

T = U2(A2 ⊕ 0)U∗
2 .
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(iv) There exist Hilbert spaces K3 and L3, U3 ∈ B(K3 ⊕ L3,H) injective and A3 ∈
B(K3) isomorphism such that

T = U3(A3 ⊕ 0)U∗
3 .

Proof. We present a sketch of the proof for (i)⇒(ii):

Let K1 = R(T ), L1 = N (T ), U1 : K1 ⊕L1 → H with

U1(x1, x2) = x1 + x2,

for all x1 ∈ R(T ) and x2 ∈ N (T ), and A1 = T |R(T ) : R(T ) → R(T ). Since

T is EP, R(T )⊕⊥N (T ) = H and thus U1 is unitary. Moreover it is easy to see that

U∗
1 x = (PTx, PN (T )x), for all x ∈ H. It is obvious that A1 is an isomorphism. A simple

calculation leads to (2.13).

It is easy to see that when T = U1(A1 ⊕ 0)U∗
1 and T is positive, so is A1, since

〈x, Tx〉 = 〈x1, A1x1〉, x1 ∈ R(T ).

In what follows, T will denote a singular positive operator with a canonical form T =

U1(A1 ⊕ 0)U∗
1 , R is the unique solution of the equation R2 = A1 and we can define

V =

[

R 0
0 0

]

, (2.14)

which implies

V † =

[

R−1 0
0 0

]

As in the previous cases, since the two operators A and R are arbitrary, one does not expect

that the range of their product will always be closed.

Using Proposition 2.2, in Theorem 2.1 from [35] is derived the following result con-

cerning constrained optimization of quadratic forms.

Theorem 2.1. [35] Let T = U1(A1 ⊕ 0)U∗
1 ∈ B(H) be a singular positive operator, and

the equation Ax = b, with A ∈ B(H) singular with closed range and b ∈ H. If the set

S = {x ∈ N (T )⊥ : Ax = b}

is not empty, then the problem

minimize 〈x, Tx〉, x ∈ S

has the unique solution

x̂ = U1V
†
(

AU1V
†
)†

b,

where V is defined in (2.14), under the assumption that PA∗PT has closed range.

Proof. We have that
〈x, Tx〉 = 〈x, U1(A1 ⊕ 0)U∗

1x〉

= 〈U∗
1 x, (A1 ⊕ 0)U∗

1x〉

= 〈U∗
1 x, (R2 ⊕ 0)U∗

1x〉.
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Further U∗
1 x = (x1, x2) and

〈U∗
1x, (A1 ⊕ 0)U∗

1x〉 = 〈x1, A1x1〉, x1 ∈ R(T ).

Therefore,
〈x, Tx〉 = 〈(R ⊕ 0)U∗

1x, (R ⊕ 0)U∗
1 x〉

= 〈Rx1, Rx1〉

= 〈y, y〉,

where y = Rx1, with x1 ∈ N (T )⊥.

The problem of minimizing 〈x, Tx〉 is equivalent of minimizing ‖ y ‖2 where

y = Rx1 = (R ⊕ 0)U∗
1x ⇐⇒ x = U1(R

−1 ⊕ 0)y = U1V
†y.

As before, the minimal norm solution ŷ is equal to ŷ =
(

AU1V
†
)†

b. Therefore,

x̂1 = U1V
†
(

AU1V
†
)†

b,

with x̂1 ∈ S.

We still have to prove that AU1V
† has closed range. Using Proposition 1.14, the range

of U1V
† is closed since

Hi = N (U∗
1 ) ∩

(

N (U∗
1 ) ∩ R(V †)

)⊥

= 0

and so, the angle between U∗
1 and V † is equal to π

2 .

From Proposition 1.15 the operator PA∗PT must have closed range because

A†AU1V
†(U1V

†)† = PA∗U1PRU∗
1

= PA∗U1PA1
U∗

1

= PA∗PT ,

making use of Proposition 1.17 and the fact R(R) = R(A1) = R(T ).

Corollary 2.1. [35] Under all the assumptions of Theorem 2.1 we have that the minimum

value of f(x) = 〈x, Tx〉, x ∈ S is equal to ‖
(

AU1V
†
)†

b ‖2 .

Proof. One can verify that

fmin(x) = 〈x̂, T x̂〉 = 〈U1V
†(AU1V

†)†b, TU1V
†(AU1V

†)†b〉.

Since T = U1(R
2 ⊕ 0)U∗

1 it can be further derived

fmin(x) =

〈

U1V
†
(

AU1V
†
)†

b, U1(R ⊕ 0)(AU1V
†)†b

〉

=

〈

PT (AU1V
†)†b,

(

AU1V
†
)†

b

〉

=

∥

∥

∥

∥

(

AU1V
†
)†

b

∥

∥

∥

∥

2

.

Complimentary Contributor Copy
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Since

V †(R ⊕ 0) = (I ⊕ 0) = PT

and

R(AU1V
†)† = R(AU1V

†)∗ = R(RU1A
∗) ⊆ R(R) = R(T ),

the following holds:

PT

(

AU1V
†
)†

b = (AU1V
†)†b.

The proof is complete.

The following basic result, presented in Proposition 2.3, can be found in [9]. This result

is a starting point in the investigation of quadratic forms.

Proposition 2.3. [9] Consider the equation Ax = b. If the set

S = {x : Ax = b}

is not empty, then the problem

minimize 〈x, Tx〉, x ∈ S (2.15)

has the unique solution

x = UD− 1

2 (AUD− 1

2 )†b,

where T = UDU∗ is the decomposition of T derived in Proposition 1.3.

Proof. Using T = UDU∗, one can verify

〈x, Tx〉 = 〈v, v〉,

so that the minimization (2.15) can be presented in the equivalent form

minimize 〈v, v〉,

such that AU∗D−1/2v = a,

where

v = D1/2Ux ⇐⇒ x = U∗D−1/2v.

Using the Moore-Penrose solution of the last equation it can be derived

v =
(

AU∗D−1/2
)†

a,

which can be used to complete the proof.

The following Proposition 2.4 can be found in Manherz and Hakimi [5], and it also

represents the starting point in the constrained minimization of quadratic forms.
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Proposition 2.4. [5] Let T ∈ R
m×m be positive definite, A ∈ R

n×m and consider the

equation Ax = b with b ∈ Rn×1.

If the set

S = {x : Ax = b}

is nonempty, then the optimization problem

minimize Φ(x) = 〈x, Tx〉+ 〈p, x〉+ a, x ∈ S,

with p ∈ R
m×1 and a ∈ R has the unique solution

x = T− 1

2

(

AT− 1

2

)†
(

1

2
AT−1p + b

)

−
1

2
T−1p.

Proof. A minimizer of the function Φ(x) is also minimizer of

xT Tx + pT x +
1

4
pTT−1p =

∥

∥

∥

∥

T 1/2x +
1

2
T−1/2p

∥

∥

∥

∥

.

Let us use the substitution

y = T 1/2x +
1

2
T−1/2p.

This implies

x = T−1/2y −
1

2
T−1p

and produces the optimization problem with respect to y:

Minimize ‖y‖2 subject to constraint

AT−1/2y =
1

2
AT−1p + b.

Using the Moore-Penrose solution of the last equation it follows

y0 =
(

AT−1/2
)†
(

1

2
AT−1p + b

)

,

which leads to our original attention.

A study of a minimization problem for a matrix-valued function under linear con-

straints, in the case of a singular matrix, was presented in [43]. More precisely, the au-

thors of [43] considered the problem of minimizing the matrix valued function WT RW,

W ∈ R
M×m, where R ∈ R

M×M is a positive semidefinite symmetric matrix and W
belongs to a set of linear constraints

S =
{

W ∈ R
M×m : CT W = F

}

, C ∈ R
M×n, F ∈ R

n×m.

The main result from [43] is presented in the next statement.
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Theorem 2.2. [43] Let C ∈ R
M×M be a positive semidefinite symmetric matrix and the

matrices W ∈ RM×m, C ∈ RM×n satisfy m < M, n < M . If the set

S =
{

W : CT W = F, R(W ) ⊆ R(R)
}

is not empty, then the problem:

minimize WT RW, W ∈ S

has the unique solution

Ŵ = R†C
(

CT R†C
)†

F.

In the case when S is empty, the constraint must be replaced by the equation

CT W = F1 = PR(CT R†C)F.

Two applications of the proposed minimization method, in Linear Regression and B-

spline smoothing, were presented in [43].

Let T be a symmetric positive definite matrix. Let U be the unitary matrix and D the

diagonal matrix such that T = U∗DU . Let D
1

2 be the positive solution of the equation

R2 = D, and let D− 1

2 denotes the matrix (D
1

2 )−1 = R−1. Since T is a positive definite

matrix the existence of the matrices T−1 and R−1 is ensured. Similarly, by X− 1

2 we denote

the matrix (T
1

2 )−1 = X−1.

Lemma 2.1. The minimization of the functional 〈x, Tx〉 is equivalent to the problem of

finding a value x of minimum U∗D− 1

2 -norm.

Proof. Using

〈x, Tx〉 = 〈x, U∗DUx〉

=
〈

D
1

2 Ux, D
1

2 Ux
〉

,

we conclude that the minimization of 〈x, Tx〉 is equivalent with minimizing

∥

∥

∥
D

1

2 Ux
∥

∥

∥

2
.

Now, using

‖ D
1

2 Ux ‖2= ‖x‖2

U∗D− 1
2

,

we conclude that the original problem have led us to the problem of finding a minimizer of

‖x‖2

U∗D− 1
2

, which completes the proof.

Now, the problem (2.9) could be rewritten as the following multicriteria optimization

problem:

Stage 1: minimize ‖Ax − b‖2;

Stage 2: minimize {‖x‖
U∗D− 1

2
among all solutions in Stage 1}.

In the case when the system Ax = b is not consistent in Stage 1 and instead ‖ · ‖
U∗D− 1

2

we use the 2-norm, the stated multicriteria problem reduces to well–known multicriteria

problem corresponding to the Moore-Penrose inverse. Therefore, the Moore–Penrose in-

verse is a solution of the optimization problem

minimize 〈x, x〉, x ∈ S,

where the 2-norm is assumed.
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3. The T-Restricted Weighted Moore-Penrose Inverse

The results surveyed in this section are based on the papers [34,35].

From all the above discussion, we can at this point translate the results presented to

the finite dimensional case, that is, making use of matrices instead of operators. Theorem

3.1 translates Theorem 2.1 for the case of matrices. A useful result is presented before the

theorem.

Proposition 3.1. Let T be an EP matrix. Then, it holds that
(

T †
)

1

2 =
(

T
1

2

)†
.

Theorem 3.1. [35] Let T ∈ R
n×n be a singular positive matrix, and the linear system

Ax = b is defined by a singular matrix A ∈ Rm×n and a vector b ∈ Rn. If the set

S = {x ∈ N (T )⊥ : Ax = b}

is not empty, then the problem

minimize 〈x, Tx〉, x ∈ S

has the unique solution

û =
(

T †
)

1

2

(

A
(

T †
)

1

2

)†

b

=
(

T
1

2

)†
(

A
(

T
1

2

)†
)†

b.

Definition 3.1. [34] Let T ∈ R
n×n be a positive semidefinite symmetric matrix and A ∈

Rm×n. Then the n × m matrix

Â†
Im,T :=

(

T †
)

1

2

(

A
(

T †
)

1

2

)†

=
(

T
1

2

)†
(

A
(

T
1

2

)†
)†

(3.1)

is called the T-restricted weighted Moore–Penrose inverse of A.

Remark 3.1. The generalized inverse Â†
Im,T b is a minimal T semi- norm least squares

solution of Ax = b, restricted on the range of T .

Based on Theorem 3.1, similarly as the weighted Moore-Penrose inverse, we can extend

this notion to the N-restricted weighted inverse with M positive definite and N positive

semidefinite:

Â†
M,N =

(

N †
)

1

2
(

M
1

2 A(N †)
1

2

)†
M

1

2 . (3.2)

The generalized inverse defined in (3.2) initiates a minimal N semi-norm, M -least squares

solution Â†
M,Nb of Ax = b, but restricted on the range of N .

In [34] it is verified that the solution û, defined in Theorem 3.1, satisfies the constraint

Ax = b. Indeed,

Aû = A(T †)
1

2 (A(T †)
1

2 )†b = PAT b
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and since the set S = {x ∈ R(T ) : Ax = b} is not empty, we have that b must be equal to

ATw, for some w and therefore PAT b = b.

The matrix Â†
Im,T does not satisfy all four conditions of equation (1.8) as it is an inverse

restricted to the range of T . More precisely, the following is satisfied.

Proposition 3.2. [34] Let T ∈ R
m×m be positive semidefinite, A ∈ R

n×m and the equa-

tion Ax = b. The T-restricted weighted inverse Â†
I,T satisfies the following basic properties:

(i) AÂ†
I,TA = PAT A.

(ii) TÂ†
I,TAÂ†

I,T = TÂ†
I,T .

(iii) (AÂ†
I,T )∗ = (AÂ†

I,T ).

(iv) Â†
I,TAÂ†

I,T = Â†
I,TPAT .

Proof.

(i) AÂ†
I,TA = A(T †)

1

2 (A(T †)
1

2 )†A = PAT †A = PAT A.

(ii)

TÂ†
I,TAÂ†

I,T = T (T †)
1

2 (A(T †)
1

2 )†A(T †)
1

2 (A(T †)
1

2 )†

= T (T †)
1

2 (A(T †)
1

2 )†

= TÂ†
I,T .

(iii) (AÂ†
I,T )∗ = (A(T †)

1

2 (A(T †)
1

2 )†)∗ = (PAT †)∗ = PAT † = AÂ†
I,T .

(iv)

Â†
I,TAÂ†

I,T = (T †)
1

2 (A(T †)
1

2 )†A(T †)
1

2 (A(T †)
1

2 )†

= (T †)
1

2 (A(T †)
1

2 )†P
AT

1
2

= Â†
I,TPAT .

From the properties of Â
†
I,T presented in Proposition 3.2, it is clear that Â

†
I,T is not an

{i, j, k} inverse of A. Nevertheless, many of the already known properties of the general-

ized inverses also hold for the T-restricted weighted inverse, with slight modifications, as

we can see in the following proposition.

Proposition 3.3. [34] Let T ∈ R
m×m be positive semidefinite and A ∈ R

n×m. The

T-restricted weighted inverse Â†
I,T has the following properties:

(i) If Â†
I,T = Â†

I,S holds for two positive semidefinite matrices S, T then

R(AT ) = R(AS).

(ii) Similarly to the well-known formula TT † = PT the property

AÂ†
I,T = PAT

is satisfied.
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(iii) If A is an R
m×m matrix and Â†

I,T A = AÂ†
I,T , then

PAT (T †)
1

2 = (T †)
1

2 PTA∗ .

Proof.

(i) Let the two positive semidefinite matrices S, T such that Â
†
I,T = Â

†
I,S . Then,

AÂ†
I,T = AÂ†

I,S ⇒ PAT = PAS .

(iii) If Â
†
I,T A = AÂ

†
I,T then

(T †)
1

2

(

A
(

T †
)

1

2

)†

A = A(T †)
1

2

(

A
(

T †
)

1

2

)†

,

which implies

(T †)
1

2

(

A
(

T †
)

1

2

)†

A(T †)
1

2 = A(T †)
1

2

(

A(T †)
1

2

)†
(T †)

1

2

and so,

(T †)
1

2 P
(A(T †)

1
2 )∗

= PAT (T †)
1

2 .

But, since R((A(T †)
1

2 )∗) = R(TA∗) we have that PAT (T †)
1

2 = (T †)
1

2 PTA∗ .

Example 3.1. Let H = R
3, the matrix A is equal to

A =

[

−2 3 5

1 0 −1

]

and the positive semidefinite matrix T is chosen as

T =





7 −3 −7

−3 36 3
−7 3 7





Here, the equation is Ax = b where

b =

[

19

−2

]

,

is consistent.

We will compute the T-restricted weighted inverse Â†
I2,T . Consequently,

Â†
I2,T =





0 1
2

1
3

7
6

0 −1
2



 .
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Then, û = Â†
I2,T b = (−1, 4, 1)T is the minimal T semi-norm least squares solution of

Ax = b, restricted on the range of T .

It is easy to see that all vectors u∈R(T ) are of the general form u=(x, y,−x)T , x, y∈
R, so the solution û has the expected form.

In Figure 1 it is observable in blue the quadratic form Φ(x) = 〈x, Tx〉 for all the vectors

x ∈ N (T )⊥ and in red the set of all vectors u satisfying the constraint Au = b. As we can

see the line is tangent to the surface therefore there is only one solution which is the vector

found, û = Â†
I2,T b. In this case, ‖û‖2

T = 652.

F(x)=<Tx,x> (blue) and Ax=b (red)

-15
-10

-5
 0

 5
 10

-15 -10 -5  0  5  10  15  20

 0

 2000

 4000

 6000

 8000

 10000

 12000

Figure 1. Constrained minimization of ‖.‖T , u ∈ N (T )⊥ under Ax = b.

3.1. Relations of Â
†
I,T with the V-Orthogonal Projector

For every matrix X ∈ R
n×p and a positive semidefinite matrix V ∈ R

n×n , the matrix

PX :V = X(X∗V X)†X∗V (3.3)

is called the V-orthogonal projector with respect to the semi-norm ‖.‖V (see e.g., [48],

or [17] section 3). Let us mention that the V-orthogonal projector is unique in the case

rank(V X) = rank(X).

Relations between Â†
I,T and PA:T are investigated in Lemma 3.1. We will make use of

the following proposition.
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Proposition 3.4. ( [48, Theorem 7]) Let PX :V be as given, and suppose that rank(V X) =
rank(X). Then

PX :V = X
(

V
1

2 X
)†

V
1

2 .

Using the above notation, we can see that similarly to the Moore-Penrose inverse prop-

erty T †T = PT ∗ we have the following statement.

Lemma 3.1. [34] Let T ∈Rm×m be a positive semidefinite matrix and A∈Rn×m. If

rank(T †A∗) = rank(A∗),

then the T-restricted weighted inverse Â†
I,T has the property

Â
†
I,TA = P ∗

A∗ :T †.

Proof. Under the stated assumptions, it is observable that X ≡ A∗ and V ≡ T †. Therefore,

PA∗ :T † = A∗((T †)
1

2 A∗)†(T †)
1

2 .

On the other hand, one can verify

P ∗
A∗:T † = (T †)

1

2 (A(T †)
1

2 )†A = Â†
I,TA,

which completes the proof.

Remark 3.2. The relation rank(T †A∗) = rank(A∗) can be replaced by

N (T ) ∩ N (A)⊥ = N (T ) ∩R(A∗) = {0}.

Proof. Since

rank(T †A∗) = rank(A∗) − dim(N (T †) ∩R(A∗)),

it is possible to verify N (T †)∩R(A∗) = {0} but since T is positive, N (T †) = N (T ). So,

rank(T †A∗) = rank(A∗) is equivalent to N (T ) ∩R(A∗) = {0}.

By the above remark, we can have many results related to the V-orthogonal projector,

using Theorems 7 and 8 from [48].

Proposition 3.5. [34] Let T ∈ R
m×m be a positive semidefinite matrix and A ∈ R

n×m,

such that N (T ) ∩ R(A∗) = {0}. Then, the following statements hold:

(i)] APA∗ :T † = PAT A.

(ii) In the case when AÂ†
I,T = Â†

I,T A we have that P ∗
A∗ :T † = PAT .

(iii) Â†
I,TPAT A = Â†

I,TA.

(iv) The matrix Â†
I,T A is Hermitian.

(v) Â†
I,T A = PT .
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Proof.

(i) from Proposition 3.1 it can be verified APA∗ :T † = AÂ
†
I,TA, which is equal to PAT A

from Proposition 3.2.

(ii) If AÂ†
I,T = Â†

I,T A then from propositions 3.1 and 3.3 we conclude PAT = P ∗
A∗ :T † .

(iii) From [48], Theorem 7, we have that P 2
A∗ :T † = PA∗ :T † and so

(Â
†
I,TA)2 = (Â

†
I,TA) ⇒ Â

†
I,T AÂ

†
I,TA = Â

†
I,TA.

Therefore Â†
I,TPAT A = Â†

I,T A.

(iv) From [48], Theorem 8, we have that PA∗ :T † = P ′
A∗ :T † and so Â†

I,TA is Hermitian.

(v) From [48], Theorem 8, one can verify PA∗:T † = PT † = PT and so Â†
I,TA = PT .

An important paper for the interested reader relating seminorms and generalized in-

verses is [49].

3.2. Minimization of Quadratic Functionals

All the results presented in this section come from [46].

The next step for generalizing the so far presented results is to study the problem

minimize Φ(x) = 〈x, Tx〉+ 〈p, x〉+ a, x ∈ S ∩ N (T )⊥. (3.4)

This approach can be seen as a more general case of Theorem 3.1. Let T be a positive

definite symmetric matrix. An interesting case to examine is when T is singular and positive

semidefinite with a nonempty kernel, N (T ) 6= {0}. In this case we have that 〈x, Tx〉 = 0

for all x ∈ N (T ) and so, a first approach in both the finite and infinite dimensional case

would be to look among the vectors x ∈ N (T )⊥ = R(T ∗) = R(T ) for a minimizing

vector for Φ(x). In this case, generalized inverses will be used.

A first approach to the problem stated is to use an {1, 3} and an {1, 4}-inverse in order

to find the set of least squares solutions and the minimal norm solution among them, without

using the constraint x ∈ N (T )⊥.

Theorem 3.2. [46] Let T ∈ B(H) be singular positive semidefinite with a non empty

kernel, N (T ) 6= {0}, with X2 = T . Let also A ∈ B(H), where A is singular and consider

the equation Ax = b.

If the set S = {x : Ax = b} is nonempty, then the minimization problem (3.4) with

p ∈ H and a ∈ R has a least squares solution

x̂ = X (1,3)
(

AX (1,3)
)(1,4)

(

1

2
AX (1,3)X†p + b

)

−
1

2
X (1,3)X†p.
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Proof. Let x, p ∈ H and an arbitrary constant a ∈ R. Hence, if there exists a vector x̂ that

minimizes Φ(x), it would also minimize

Ψ(x) = 〈Tx, x〉+ 〈x, p〉+
1

4
〈T †p, p〉.

We can easily see that
∥

∥

∥

∥

Xx +
1

2
X†p

∥

∥

∥

∥

2

= Ψ(x).

The substitution y = Xx + 1
2X†p implies that y ∈ R(X) = R(T ).

We have that

Xx = y −
1

2
X†p.

Hence,

x = X (1,3)y −
1

2
X (1,3)X†p.

Since Ax = b, we have that AX (1,3)y − 1
2AX (1,3)X†p = b, and therefore we can find the

minimal norm solution for y using a {1, 4} inverse. So, ŷ is equal to

ŷ =
(

AX (1,3)
)(1,4)

(

b +
1

2
AX (1,3)X†p

)

,

and therefore, Ψ(x) is minimized.

By substitution, we have that

x̂ = X (1,3)
(

AX (1,3)
)(1,4)

(

1

2
AX (1,3)X†p + b

)

−
1

2
X (1,3)X†p.

The proof is complete.

We can also find a more general set of solutions, according to Proposition 1.12, since

the set of least squares solutions possesses more general form.

Corollary 3.1. [46] The set of least squares solutions of (3.4) is defined by

x̃=X (1,3)
(

AX (1,3)
)(1,4)

(

1

2
AX (1,3)X†p T +b

)

−
(

AX (1,3)
)(1,4)

ARw −
1

2
X (1,3)X†p,

with an arbitrary vector w and R = (I − X (1,3)X).

Proof. From Proposition 1.12 it is not difficult to verify

Xx = y −
1

2
X†p =⇒ x = X (1,3)y −

1

2
X (1,3)X†p + Rw,

where R = (I − X (1,3)X) and w is an arbitrary vector from H.

Therefore, Ax = b implies

AX (1,3)y =
1

2
AX (1,3)X†p + b − ARw.
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So, a minimal norm solution among all vectors y is

ŷ =
(

AX (1,3)
)(1,4)

(

b +
1

2
AX (1,3)X†p1

)

−
(

AX (1,3)
)(1,4)

ARw.

By substitution we have the general form of the least squares solutions set which mini-

mizes Ψ(x):

x̃=X (1,3)
(

AX (1,3)
)(1,4)

(

1

2
AX (1,3)X†p+b

)

−
(

AX (1,3)
)(1,4)

ARw −
1

2
X (1,3)X†p,

which completes the proof.

As a special case of the above set, we can have a unique least squares minimal norm

solution, using the Moore-Penrose inverse. Moreover, since N (T ) = N (T †) the vectors

examined in this case satisfy also the additional property x ∈ N (T )⊥.

Theorem 3.3. [46] Let T ∈ B(H) be singular positive semidefinite with a non empty

kernel, N (T ) 6= {0}, with X2 = T . Let also A ∈ B(H), where A is singular and consider

the equation Ax = b.

If the set S = {x : Ax = b} is not empty, then the optimization problem (3.4) with

p ∈ H and a ∈ R has the unique solution

x̂ = X†(AX†)†
(

1

2
AT †p + b

)

−
1

2
T †p,

assuming that the operator PR(A∗)PR(T ) has closed range.

Proof. Since we will restrict the minimization for all vectors x ∈ N (T )⊥ we have that

〈x, p〉 = 〈x, p1〉, where p1 = PR(T )p for all vectors p ∈ H, according to the decomposition

p = p1 + p2 ∈ R(T )⊕N (T ).

Let x, p ∈ H and an arbitrary constant a ∈ R. Hence if there exists a vector x̂ that

minimizes Φ(x), it would also minimize

Ψ(x) = 〈Tx, x〉+ 〈x, p〉+
1

4
〈T †p, p〉

= 〈Tx, x〉+ 〈x, p1〉+
1

4
〈T †p1, p1〉.

We can easily see that
∥

∥

∥

∥

Xx +
1

2
X†p1

∥

∥

∥

∥

2

= Ψ(x),

and

X = U(R ⊕ O)U∗, X† = U(R−1 ⊕ O)U∗.

The substitution

y = Xx +
1

2
X†p1 (3.5)

implies y ∈ R(X) = R(T ).
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Further,

Xx = y −
1

2
X†p1 ⇔ U(R ⊕ O)U∗x = y −

1

2
U(R−1 ⊕ O)U∗p1.

Hence,

x = U(R−1 ⊕ O)U∗y −
1

2
U(R−1 ⊕ O)(R−1 ⊕ O)U∗p1

and so, since y, p1 ∈ R(T )

x = X†y −
1

2
T †p1, with x ∈ R(T †) = R(T ) = N (T )⊥.

Since Ax = b, we have that AX†y = b + 1
2AT †p1 and therefore by Proposition 1.11 the

minimal norm solution exists and is equal to

ŷ = (AX†)†
(

b +
1

2
AT †p1

)

,

and therefore, Ψ(x) is minimized.

Now, the substitution (3.5) leads to

x̂ = X†(AX†)†
(

1

2
AT †p1 + b

)

−
1

2
T †p1

and since T †p = T †p1 for all

p ∈ H =⇒ x̂ = X†(AX†)†
(

1

2
AT †p + b

)

−
1

2
T †p.

The only thing that needs to be proved is the fact that the operator AX† has closed

range and so its Moore-Penrose Inverse is bounded. Since X is positive, therefore EP,

R(X) = R(X2) = R(T ) and so X has closed range.

Moreover, since the two operators A and X† are arbitrary, one does not expect that the

range of their product will always be closed. From Proposition 1.15, this is equivalent to

the fact that the operator PR(A∗)PR(T ) has closed range because

A†AX†(X†)† = A†AX†X = A†AU(R−1 ⊕ 0)(R ⊕ 0)U∗ = PR(A∗)PR(T )

and the proof is completed.

Corollary 3.2. The matrix Â
†
Im,T defined by (3.1) is a minimizer of the optimization prob-

lem

minΨ(Z) = 〈Z, TZ〉,

where T is a positive n × n matrix and X ∈ R
n×m, subject to the constraint set

Z ∈ ΩI, ΩI = {Z : Z ∈ R
n×m, AZ = I, A ∈ R

m×n
r }.
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Theorem 3.4. If A ∈ R
m×n is given matrix, then

Â†
Im,T = A

(2)
U,V , U = R(T †A∗), V = N (TA∗) = N (T †A∗). (3.6)

Proof. Definition of Â†
Im,T gives us R(Â†

Im,T ) = R(T †A∗) and

N

(

(

A
(

T
1

2

)†
)†
)

⊆ N (Â†
Im,T ) ⊆ N

(

A
(

T
1

2

)†
(

A
(

T
1

2

)†
)†
)

=N

(

(

A
(

T
1

2

)†
)†
)

.

Hence,

N
(

Â†
Im,T

)

= N

(

(

T
1

2

)†
A∗

)

= N (TA∗).

However, A(2) inverse with pre described range and null space is uniquely determined

and it allows us to conclude that Â†
Im,T = A

(2)
U,V .

Corollary 3.3 gives a full-rank representation of the T -minimal G-constrained inverse

and can be useful in its numerical computations.

Corollary 3.3. Let A, G and T satisfy the conditions of Definition 3.1. If T †A∗ = PQ is

an arbitrary full-rank decomposition of T †A∗ then:

(1) QAP is an invertible complex matrix;

(2) Â
(2)
G,T = P (QAP )−1Q.

Proof. The proof follows from Theorem 3.4 and [50, Theorem 3.1].

Full-rank representation Â†
Im,T defined in Corollary 3.3 allows us to define Algorithm

3.1. for its computation. Full-rank factorization of the matrix T †A∗ is based on its QR

decomposition. Construction of the full-rank factorization of T †A∗ using its QR decompo-

sition is reused from [51]

Numerical results on test matrices from [52,53] are presented in [39].

4. The T-Restricted Weighted Drazin Inverse

All the results presented in this section are based on [39,40].

A further step will be now to approach the problem of finding an approximate solution

of the quadratic problem with the objective function Φ(x) when the set S is empty, by

analyzing the generalized normal equation of the system Ax = b. Then, according to

results presented in Subsection 1.2.2, it is reasonable to choose a new the constraint set SD

which is defined in (2.11). The minimization problem with the goal function (2.7) subject to

the constraint set SD is considered in [39]. The generalized inverse arising from the results

derived in [39] is defined and investigated in [40].

Also, an additional reason for replacing the constraint set S by the constraint set SD is

evident. Namely, if Ax = b is a consistent or inconsistent singular linear system, then the

linear system of equations Ak+1x = Akb, where k ≥ ind(A) is consistent [54].
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Algorithm 3.1. Computing the generalized inverse Â†
Im,T .

Require: The matrix A of dimensions m×n and of rank r and positive semidefinite n×n

matrix T .

1: Choose arbitrary, but fixed, n × m matrix G of rank 0 < s ≤ r.

2: Compute W = T †A∗.

3: Compute the QR decomposition of the matrix W in the form

WP = QR, (3.7)

where P is an m × m permutation matrix, Q ∈ Cn×n, Q∗Q = In and R ∈ Cn×m is

an upper trapezoidal matrix.

4: Compute t = rank(T †A∗).

5: Assume that Q and R are partitioned as

Q =
[

Q1 Q2

]

, R =

[

R11 R12

O O

]

=

[

R1

O

]

, (3.8)

where Q1 consists of the first t columns of the matrix Q and R11 ∈ Ct×t is nonsingular.

Generate the full–rank decomposition of the matrix W by means of

W = Q1(R1P
∗). (3.9)

6: Solve the matrix equation R1P
∗AQ1X = R1P

∗.
7: Compute the output Â†

Im,T = Q1X.

Reasons become more apparent in the case when some additional assumptions on the

matrix A are imposed. Campbell in [16] showed that ADb is a solution of linear system

Ax = b if and only if b ∈ R(Ak), k = ind(A) and proved that ADb is the unique solution

of Ax = b provided that x ∈ R(Ak).

Proposition 4.1. [16, Pages 123, 203] A vector x is a Drazin-inverse solution ADb of

Ax = b if x is a solution of the normal Drazin equation (1.9) of the linear system Ax = b.

If b ∈ R(Ak) then ADb is the unique solution of Ax = b which belongs to R(Ak).

It is assumed that T ∈ R
n×n is a positive semidefinite matrix. Let A ∈ R

n×n be such

that ind(A) = k and x, b ∈ Rn. As in the previous case, we consider the minimization of

the functional Φ(x). Since N (T ) 6= ∅, there exists vectors belonging to N (T ). Clearly,

〈x, Tx〉 = 0 is satisfied for each x ∈ N (T ) and so, we will investigate the minimization

problem

minimize Φ(x), x ∈ SD ∩ N (T )⊥. (4.1)

Of course, the additional assumption SD ∩ N (T )⊥ 6= ∅ must be assumed in this case.

For the sake of completeness, we restate necessary facts required in the rest of this

section. Let us mention that for an EP matrix T we have T † = T#. The matrix X satisfying

X2 = T is also EP since X is symmetric. Operators T , X and X† = X# can be considered
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in the form
T = U(A1 ⊕ O)UT ,

X = U(R ⊕ O)UT , X† = U(R−1 ⊕ O)UT , R2 = A1.

Before the review of the optimization results and the properties of the corresponding

generalized inverse, it will be useful to restate an interesting and useful property of the

constraint set SD. This property makes possible several equivalent definitions of the set

SD.

Lemma 4.1. [39] For a given matrix A, let k = ind(A). The constraint set SD is equivalent

to the following two sets:

SD = SD1
= {x| x ∈ R

n, Akx = ADAkb}

= SD2
= {x| x ∈ R

n, ADAkx = ADAk−1b}, k ≥ 1.

Proof. In the first step of the proof it is necessary to verify SD = SD1
. For this purpose, let

us consider arbitrary x ∈ SD. Multiplying Ak+1x = Akb by AD from the left and using

the property (1k) of the Drazin inverse, we immediately obtain x ∈ SD1
. On the other

hand, let us choose arbitrary x ∈ SD1
. Multiplying from the left both sides of the equation

Akx = ADAkb by A, it is easy to conclude that x satisfies

Ak+1x = AADAkb = Akb,

which, by definition, means x ∈ SD.

In the second part of the proof it is necessary to verify SD1
= SD2

, for each k ≥ 1.

Multiplying Akx = ADAkb from the left by AD we obtain

ADAkx = ADADAkb = ADAADAk−1b = ADAk−1b.

On the other hand, multiplying both sides of ADAkx = ADAk−1b by A we get

AADAkx = AADAk−1b =⇒ Akx = AADAk−1b = ADAkb,

which completes the proof.

4.1. The Symmetric Positive Semidefinite Case

Theorem 4.1 is the main result from [39]. This statement gives two approximate so-

lutions which minimize Φ(x) under the constraint set SD. The first approximation is pre-

sented in three equivalent ways. The results of Lemma 4.1 are very important in deriving

these equivalent representations.

The next auxiliary result gives decompositions of positive semidefinite matrices, i.e.,

positive matrices.

Proposition 4.2. The following statements hold:
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a) If T ∈ R
n×n is a positive semidefinite matrix, then there exists an orthogonal matrix

U and invertible diagonal matrix T1 such that

T = UT (T1 ⊕ O)U = UT

[

T1 0
0 0

]

U.

Also, there exists a unique matrix X such that X2 = T which is also an EP matrix,

and which satisfies the following

X = UT (R ⊕ O)U, X† = UT (R−1 ⊕ O)U, where R2 = T1.

b) If T ∈ R
n×n is a positive definite matrix, then there exist an orthogonal matrix U

and a diagonal matrix D such that

T = UTDU. (4.2)

Also, there exists a unique matrix X such that X2 = T which is also an EP matrix,

and which satisfies the following

X = UT RU where R2 = D.

Theorem 4.1. [39] Let A ∈ C
n×n be a given matrix of index k = ind(A). The following

two vectors, denoted by x̂1 and x̂2, are approximate solutions to the problem (4.1):

x̂1 = X†
(

Ak+1X†
)†

Ak

(

b +
1

2
AT †p1

)

−
1

2
T †p1 (4.3)

= X†
(

AkX†
)†

ADAk

(

b +
1

2
AT †p1

)

−
1

2
AT †p1 (4.4)

= X†
(

ADAkX†
)†

ADAk−1

(

b +
1

2
AT †p1

)

−
1

2
T †p1, k ≥ 1 (4.5)

x̂2 = X†
(

AkX†
)D

ADAk

(

b +
1

2
AT †p1

)

−
1

2
AT †p1, (4.6)

where X2 = T and p1 = PR(T )(p).

Proof. In this case, R(T ) = R(T ∗) and N (T ) are complementary spaces. Therefore,

an arbitrary vector p ∈ Cn can be decomposed as p = p1 + p2 ∈ R(T ) ⊕ N (T ) and

x ∈ N (T )⊥. This implies 〈x, p〉 = 〈x, p1〉.

The rest of the proof is based on the principles from [5]. The vector x̂ which minimizes

Φ(x) also minimizes

Ψ(x) = 〈x, Tx〉+ 〈x, p1〉 +
1

4
〈T †p1, p1〉

=

∥

∥

∥

∥

Xx +
1

2
X†p1

∥

∥

∥

∥

2

, p1 ∈ R(T ).

Let us denote by O the zero block of an appropriate size. It is convenient to denote by

y = Xx +
1

2
X†p1 = Xx +

1

2
U
(

R−1 ⊕ O
)

UTp1.
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Then it can be obtained y, p1 ∈ R(X) = R(T ) and

x = U
(

R−1 ⊕ O
)

UTy −
1

2
U
(

R−1 ⊕ O
)

UT · U
(

R−1 ⊕ O
)

UTp1

= X†y −
1

2
T †p1,

x ∈ R(T †) = R(T T ) = R(T ) = N (T )⊥.

(4.7)

Now, after the substitution of x defined by (4.7) into Ak+1x = Akb, one can verify

Ak+1X†y = Akb +
1

2
Ak+1T †p1. (4.8)

In the rest of the proof it is possible to use equation (4.8) and later apply (4.7) in order

to derive the solutions (4.3) - (4.6).

First, it is well known that the the vector x̂ = A†b represents the least-squares solution

of minimal norm of the equation Ax = b. Therefore, by exploiting the best-approximate

solution of (4.8), with respect to the variable y, and applying equation (4.7), we immediately

obtain the solution x̂1 given by (4.3).

In order to verify (4.4), let us consider (4.8) in the form

A
(

AkX†y
)

= Ak

(

b +
1

2
AT †p1

)

.

Since

Ak

(

b +
1

2
AT †p1

)

∈ R(Ak)

and

AkX†y ∈ R(Ak)

the Drazin inverse solution of (4.8) is the unique that belongs to R(Ak). Therefore, the

unique Drazin inverse solution of (4.8) is given by

AkX†y = ADAk

(

b +
1

2
AT †p1

)

. (4.9)

Finally, if we look at the best-approximate solution of the equation (4.9), we obtain

ŷ =
(

AkX†
)†

ADAk

(

b +
1

2
AT †p1

)

and

x̂1 = X†
(

AkX†
)D

ADAk

(

b +
1

2
AT †p1

)

−
1

2
AT †p1,

which is just the desired representation (4.4).

The final part of the proof is a verification that the solutions (4.3) and (4.4) are identical.

Let us remind that the solution (4.3) is derived by finding the minimizer x given by (4.7),

under the constraint Ak+1x = Akb. It is not difficult to verify that the solution given by

(4.4), also, can be derived by finding the minimizer x given by (4.7), under the constraint
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Akx = ADAkb. Indeed, in this case, by finding the best-approximate solution ŷ of the

system

AkX†y = ADAkb +
1

2
AkT †p1

we obtain

x̂1 = X†
(

AkX†
)†
(

ADAkb +
1

2
AkT †p1

)

−
1

2
T †p1,

which coincides with (4.4). The equality of the representations (4.3) and (4.4) follows from

the equivalence of the constraint sets SD and SD1
.

Going further, one can verify that (4.5) is the best-approximate solution of the system

ADAky = ADAk−1b. From SD = SD2
follows the equality of (4.3) and (4.5) for k = 1.

If we continue on this way, we will get the whole set of representations (4.5).

In order to derive the representation (4.6), we again consider (4.9). However, in this

case instead of finding the best-approximate solution of the previous equation we look at its

Drazin-inverse solution, which is given by

ŷ =
(

AkX†
)D

ADAk

(

b +
1

2
AT †p1

)

.

This is justified by the fact that both sides of the equation (4.9) belong to R(Ak). By

substituting ŷ from the last identity in (4.7), we obtain x̂2 in the form (4.6).

Corollary 4.1 gives representations of Theorem 4.1 in the particular case p = 0, which

frequently appears in practical situations.

Corollary 4.1. [39] Let A ∈ C
n×n be a given matrix and let k = ind(A). The following

two vectors, denoted by x̂1 and x̂2, are approximate solutions to the problem (4.1), in the

case p = 0

x̂1 = X†
(

Ak+1X†
)†

Akb (4.10)

= X†
(

AkX†
)†

ADAkb (4.11)

= X†
(

ADAkX†
)†

ADAk−1b, k ≥ 1; (4.12)

x̂2 = X†
(

AkX†
)D

ADAkb, (4.13)

where X2 = T .

Corollary 4.2. [39] For a given matrix A, let k = ind(A). The solution x̂1 defined in

Theorem 4.1 can be given with the following representation

x̂1=UT V †
(

Ak+1UTV †
)†

Ak

(

b+
1

2
AUT (V †)2Up1

)

−
1

2
UT (V †)2Up1 (4.14)

=UT V †
(

AkUT V †
)†

ADAk

(

b+
1

2
AUT (V †)2Up1

)

−
1

2
AUT (V †)2Up1
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Table 1. Minimal values for indicative matrix sizes

Matrix size min{1}−inv Φ(x̌) minD Φ(x̌)

10 1.5123e + 06 13.6404
50 1.4548e + 15 160.8436

100 3.9246e + 09 1.524.4161
200 9.3852e + 20 2.1914e + 04

=UTV †
(

ADAkUTV †
)†

ADAk−1

(

b+
1

2
AUT (V †)2Up1

)

−
1

2
UT (V †)2Up1, (4.15)

k ≥ 1

where X2 = T , V = R ⊕ O, S = T1 ⊕ O and p1 = PR(T )(p).

Proof. Using the notation above, it is obvious that X† = UTV †U and T † = UT (V †)2U .

Let us denote U1 = Ak+1UT V † and U2 = U . Noting that U is an orthogonal matrix, from

which U † = U−1 = UT holds, we conclude that U2U
T
2 = UT

2 U2 = I . From here we

immediately see that the Bouldin’s theorem for the reverse-order law of the matrices U1

and U2 holds, which is sufficient to complete the proof, by using Theorem 4.1.

Example 4.1. In Table 1, we present the minimizing values Φ(x̌) for random tested singular

matrices A and positive semidefinite matrices T . For comparison reasons we have calcu-

lated the minimizing values with the restricted {1}-inverse from [38] and with the proposed

T -restricted weighted Drazin inverse. The notation min{1}−inv Φ(x̌) refers to the restricted

{1}-inverse proposed in [38] and the notation minD Φ(x̌) means the minimum defined by

the T -restricted weighted Drazin inverse.

4.2. The Symmetric Positive Definite Case

In this subsection it is assumed that T ∈ Rn×n is a positive matrix. Let A ∈ Rn×n

be such that ind(A) = k and x, b ∈ R
n. Since N (T ) = {0}, we have that Φ(x) = a if

and only if x = 0. So, in what follows we suppose that x 6= 0 and we will investigate the

quadratic minimization problem

minimize Φ(x), x ∈ SD ∩ {0}C , (4.16)

In this section, it is assumed that U , D, X and R represent the notions from Proposition

4.2 part b).

Corollary 4.3. [39] The following two vectors, denoted by x̂1 and x̂2, are solutions to the
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problem (4.16):

x̂1 = T− 1

2

(

Ak+1T− 1

2

)†
Ak

(

b +
1

2
AT−1p

)

−
1

2
T−1p (4.17)

= T− 1

2

(

AkT− 1

2

)†
Ak

(

ADb +
1

2
T−1p

)

−
1

2
T−1p (4.18)

= T− 1

2

(

ADAkT− 1

2

)†
ADAk−1

(

b +
1

2
AT−1p

)

−
1

2
T−1p, k ≥ 1 (4.19)

x̂2 = T− 1

2

(

AkT− 1

2

)D
ADAk

(

b +
1

2
AT−1p

)

−
1

2
AT−1p. (4.20)

Proof. The matrix X defined by X2 = T is invertible. It is equal to X = UT D
1

2 U and its

inverse is

X−1 = UTD− 1

2 U = T− 1

2 .

The rest of the proof follows from Theorem 4.1.

Corollary 4.4. [39] The following two vectors, denoted by x̂1 and x̂2, are solutions to the

problem (4.16), in the case p = 0:

x̂1 = T− 1

2

(

Ak+1T− 1

2

)†
Akb (4.21)

= T− 1

2

(

AkT− 1

2

)†
ADAkb (4.22)

= T− 1

2

(

ADAkT− 1

2

)†
ADAk−1b, k ≥ 1 (4.23)

x̂2 = T− 1

2

(

AkT− 1

2

)D
ADAkb. (4.24)

Corollary 4.5. [39] The solution x̂1 defined in Corollary 4.3 can be given with the follow-

ing representation

x̂1=UTD− 1

2

(

Ak+1UTD− 1

2

)†
(

Akb +
1

2
Ak+1UTD−1Up

)

−
1

2
UTD−1Up (4.25)

=UTD− 1

2

(

AkUTD− 1

2

)†
(

ADAkb +
1

2
AkUTD−1Up

)

−
1

2
UTD−1Up (4.26)

=UTD− 1

2

(

ADAkUT D− 1

2

)†
(

ADAk−1b +
1

2
ADAkUTD−1Up

)

−
1

2
UT D−1Up,

k ≥ 1, (4.27)

where T−1 = UT D−1U .

Corollary 4.6. [39] The solution x̂1 defined in Corollary 4.4 can be given with the follow-

ing representation

x̂1 = UT D− 1

2

(

Ak+1UTD− 1

2

)†
Akb (4.28)

= UT D− 1

2

(

AkUTD− 1

2

)†
ADAkb (4.29)

= UT D− 1

2

(

ADAkUTD− 1

2

)†
ADAk−1b, k ≥ 1. (4.30)
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Remark 4.1. The solution represented by (4.17) and (4.15) could be derived from the cor-

responding approximations corresponding to the restrictions x ∈ S (Proposition 2.3 and

Proposition 2.4), by simply replacing A with Ak+1 and b with Akb. However, with our

approach we introduce several additional representations. Moreover, the solutions (4.17)

and (4.15) are derived from more general results derived for the positive semidefinite case.

In the following theorem we show that the solution of the constrained quadratic mini-

mization can be represented by an outer inverses with prescribed range and null space, i.e.

as a certain A
(2)
T,S-inverse solution.

Theorem 4.2. [39] The solution of the problem (4.16) given by (4.28) can be represented

as A
(2)
T,S-inverse solution, i.e.,

x̂1 = A
(2)

T̄ ·R((Ak)T ),N (Ak)
b,

where

T̄ = UTD− 1

2 (D− 1

2 )TU = T−1 = UTD−1U.

Proof. Let us denote

X = UTD− 1

2

(

Ak A UTD− 1

2

)†
Ak.

Consequently, the solution (4.15) can be represented in the form Xb. Simple algebra reveals

that matrix X satisfies the equation XAX = X , i.e., it is {2}-inverse of A.

Next we will determine the range and the null-space of X . Let us notice that

R(Ak+1UT D− 1

2 ) = R(Ak+1) = R(Ak). (4.31)

By using the singular-value decomposition of the matrix Ak+1UT D− 1

2 we see that

Ak+1UTD− 1

2 ∼

[

A1 0

0 0

]

:





R

(

(

Ak+1UTD− 1

2

)T
)

N (Ak+1UTD− 1

2 )



→





R(Ak+1UT D− 1

2 )

N

(

(

Ak+1UTD− 1

2

)T
)



 ,

(4.32)
where A1 is an invertible matrix, from which, by using (4.31), follows that

(Ak+1UT D− 1

2 )†∼

[

(A1)
−1 0

0 0

]

:





R(Ak)

N

(

(

Ak+1UT D− 1

2

)T
)



→







R

(

(

Ak+1UT D− 1

2

)T
)

N
(

Ak+1UT D− 1

2

)






.

(4.33)

From here, it is clear that

R((Ak+1UTD− 1

2 )†Ak) = R((Ak+1UT D− 1

2 )T ) = (D− 1

2 )TU · R((Ak)T ).

Finally,

R(X) = R

(

UTD− 1

2

(

Ak+1UT D− 1

2

)†
Ak

)

= UT D− 1

2 · R

(

(

Ak+1UT D− 1

2

)†
Ak

)

= UT D− 1

2 (D− 1

2 )TU · R((Ak)T )
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If we denote D̄ = D− 1

2 (D− 1

2 )T and T̄ = UT D̄U , we obtain R(X) = T̄ · R((Ak)T ).

Clearly if T ∈ R
n×n, then (D− 1

2 )T = D− 1

2 and D̄ = D−1.

In order to find the null-space of X we proceed as follows.

Clearly, N (Ak) ⊂ N ((Ak+1 UT D− 1

2 )†Ak). On the other hand, let us suppose that

x ∈ N ((Ak+1 UT D− 1

2 )†Ak). If we assume that x /∈ N (Ak) then Akx 6= 0 and

Akx ∈ R(Ak), since R(Ak) ⊕ N ((Ak)T ) = Rn×n it follows that Akx /∈ N ((Ak)T ) =

N ((Ak A UT D− 1

2 )†) which is contradiction. So, in this case x ∈ N (Ak) must hold, which

completes the proof.

4.3. Definition of the Restricted Weighted Drazin Inverse

From the results presented in Subsection 4.1, we can see that a new kind of inverse,

similar to the restricted weighted generalized inverse, can be defined:

Definition 4.1. [40] Let T ∈ Rn×n be a positive semidefinite Hermitian matrix and let

A ∈ R
n×n be singular. Then the n × n matrix

ÂD
Ak,T :=

(

T
1

2

)†
(

Ak+1
(

T
1

2

)†
)†

Ak

=
(

T †
)

1

2

(

Ak+1
(

T †
)

1

2

)†

Ak

(4.34)

is called the T -restricted weighted Drazin inverse of A.

The vector ûD = ÂD
Ak,T

b is a minimal T semi-norm solution of the consistent equation

Ak+1x = Akb, restricted on N (T )⊥ = R(T ) = R(T ∗).

Example 4.2. Let H = R3, the matrix

A =





1 0 1

0 2 −1
3 −4 5





and the positive semidefinite matrix

T =





2 3 −6

3 45 −9
−6 −9 18





In this case one can verify ind(A) = 1.

The equation is Ax = b where b =





4
1

9



, which is inconsistent.

Therefore, we will use as a constraint the equation A2x = Ab which is the Drazin normal

equation:




4 −4 6

−3 8 −7
18 −28 32



 ~x =





13

−7
53



 .
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We will compute the T -restricted weighted Drazin inverse of A, ÂD
Ak ,T

using Definition

4.1. We have that

ÂD
Ak ,T =





−0.2 −0.2 −0.1
0.45 0.7 0.1

0.6 0.6 0.3



 .

The vector

û = ÂD
Ak ,T b =





−1.9
3.4

5.7





is a minimal T semi-norm solution of the consistent equation A2x = Ab, restricted on

N (T )⊥ = R(T ) = R(T ∗).

The vectors in N (T ) have the form v = (x, 0, x
3 )T , x ∈ R , therefore the vectors

u ∈ R(T ) have the form u = (x, y,−3x)T , x, y ∈ R, so the solution û has the expected

form.

In addition, we have that the normal Drazin equation A2û = Ab is also satisfied.

In the present survey paper we derive an exact minimal property of the generalized

inverse ÂD
Ak ,T

. This result is given in Corollary 4.7. It is well known that the vec-operator

applied on a matrix A, denoted by vec(A), stacks the columns into a vector.

Corollary 4.7. Let A ∈ Cn×n is a given matrix satisfying ind(A) = k. The matrix ÂD
Ak,T

,

defined by (4.34), is a minimizer of the minimization problem

minΨ(Z) = 〈Z, TZ〉 = Tr(ZTTZ) = vec(ZT )vec(TZ),

where T is a positive semidefinite n×n matrix and Z ∈ Rn×n , subject to the constraint set

Z ∈ ΩAk , ΩAk = {Z : Z ∈ R
n×n, Ak+1Z = Ak, A ∈ R

n×n
r }.

4.3.1. Properties of the T-Restricted Weighted Drazin Inverse

A natural question to ask is: what kind of generalized inverses are ÂD
Ak,T

and Â†
Im,T ?

It is easy to verify that both of these generalized inverses satisfy the Penrose equation (2).

Proposition 4.3. [40] The generalized inverses ÂD
Ak,T

and Â†
Im,T are outer inverses of A,

for arbitrarily chosen matrix T .

Proof. The proof can be verified by replacing definitions (4.34) and (3.1) in the matrix

equation XAX = X .

Therefore, a new application of outer inverses is presented in this work: application in

the minimization of quadratic forms under linear constraints.

We examine further properties of the ÂD
Ak ,T

inverse. In what follows PA denotes the

orthogonal projector onto the range of A.

Proposition 4.4. [40] The matrix ÂD
Ak ,T

has the following properties:

(i) ÂD
Ak,T

A(T †)
1

2 = (T †)
1

2 P(Ak+1T )∗.
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(ii) Ak+1ÂD
Ak ,T

= Ak.

(iii) Ak+1ÂD
Ak ,T

AT = Ak+1T .

(iv) AkÂD
Ak ,T

A = Ak.

Proof.

(i) ÂD
Ak,T

A(T †)
1

2 = (T †)
1

2

(

Ak+1(T †)
1

2

)†
AkA(T †)

1

2 = (T †)
1

2 P(Ak+1T )∗.

(ii) We have that

Ak+1ÂD
Ak,T = Ak+1(T †)

1

2

(

Ak+1(T †)
1

2

)†
Ak = PAk+1T Ak.

Moreover, since the minimization takes place for the vectors x ∈ N (T )⊥ = R(T ),

we have that x = Tu for some u ∈ H and therefore PAk+1T x = PAk+1T Tu. So,

the orthogonal projector PAk+1T which projects all vectors on the range of the matrix

Ak+1T is equal to the orthogonal projector onto the range of Ak+1 for all the vectors

x = Tu. (It holds that PT (Tx) = PTx = Tx).

It is easy to see that every vector w ∈ H can be written in the form w = x + v with

x ∈ N (T )⊥ and v ∈ N (T ). Therefore, Tw = Tx.

Consequently, PAk+1T w = PAk+1T x = PAk+1TTu = PAk+1Tu. In other words

PAk+1Tx = PAk+1x for all x ∈ N (T )⊥ and for every w ∈ H of the form w = x+ v.

So, using the relation Ak+1ÂD
Ak,T

= PAk+1TAk, we have that

Ak+1ÂD
Ak ,Tw = PAk+1TAkw = PAk+1T Akx = PAk+1Akx.

Since R(Ak+1) = R(Ak) we get PAk+1Ak = Ak .

(iii) Ak+1ÂD
Ak ,T

AT = PAk+1TAk+1T = Ak+1T .

(iv) We have from (ii) that Ak+1ÂD
Ak ,T

A = PAk+1T Ak+1 and so, using the same idea

again, we have Ak+1ÂD
Ak,T

A = Ak+1. By multiplying this equality from the left

with AD we get the result.

We also investigate relations between ÂD
Ak ,T

and the V-orthogonal projector PX :V ,

defined in (3.3). The V -orthogonal projector becomes unique under the assumption

rank(V X) = rank(X), as it is stated in Proposition 3.4.

Theorem 4.3. [40] Let T ∈ R
n×n be a positive semidefinite matrix and A ∈ R

n×n. If

N (T ) ∩R(Ak) = {0}

then

ÂD
Ak ,T A = P ∗

(Ak+1)
∗
:T †.
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Proof. When N (T ) ∩R(Ak) = {0} then it holds that

rank(T †Ak+1) = rank(Ak+1),

so following Proposition 3.4 it is not difficult to verify that

P(Ak+1)∗:T † =
(

Ak+1
)∗ (

(T †)
1

2

(

Ak+1
)∗)†

(T †)
1

2 .

Therefore,

P ∗
(Ak+1)∗:T † = (T †)

1

2

(

Ak+1(T †)
1

2

)†
AkA,

which completes the proof.

How is it possible to compute the generalized inverse defined in (4.34)? Straight com-

putation by means of (4.34) requires two sequential computations of the Moore-Penrose

inverse. This is a time consuming job which is sensitive to the effects of rounding off er-

rors. To avoid this difficulty, we define an alternative representation of the matrix expression

(4.34) and define corresponding algorithm for its computation.

Theorem 4.4. If A ∈ R
n×n and ind(A) = k, then

ÂD
Ak,T = A

(2)
U,V , U = R

(

T †(A∗)k+1Ak
)

, V = N
(

T †(A∗)k+1Ak
)

.

Proof. Since ind(A) = k = ind(A∗), it follows

N
(

(A∗)k+1
)

= N
(

(A∗)k
)

, R
(

(A∗)k+1
)

= R
(

(A∗)k
)

.

Also, it is possible to verify R
(

T † (A∗)k+1
)

= R
(

T † (A∗)k
)

.

But, R
(

ÂD
Ak,T

)

= R(T †(Ak)∗) = U and

N

(

(

Ak+1
(

T
1

2

)†
)†

Ak

)

⊆ N (ÂD
Ak,T ) ⊆

(

Ak+1
(

T
1

2

)†
(

Ak+1
(

T
1

2

)†
)†

Ak

)

= N

(

(

Ak+1
(

T
1

2

)†
)†

Ak

)

.

Hence,

N (ÂD
Ak,T ) = N

(

(

Ak+1
(

T
1

2

)†
)†

Ak

)

= N

(

(

T
1

2

)†
(A∗)k+1Ak

)

= V.

Evidently, ÂD
Ak,T

is A
(2)
U,V with previously described U and V .

Corollary 3.3 gives a full-rank representation of the T -minimal G-constrained inverse

and can be useful in its numerical computations.

Corollary 4.8. Let A and T satisfy the conditions of Definition 4.1. If T †A∗G∗G = PQ is

an arbitrary full-rank decomposition of T †(A∗)k+1Ak then:

(1) QAP is an invertible complex matrix;

(2) Â
(2)
G,T = P (QAP )−1Q.
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Full-rank representation of the outer inverse Â
(2)
G,T defined in Corollary 4.8 allows us

to define Algorithm 4.1. for its computation. Full-rank factorization of T †(A∗)k+1Ak is

defined using its QR decomposition.

Algorithm 4.1. Computing the ÂD
Ak ,T

outer inverse.

Require: The matrix A of dimensions m×n and of rank r and positive semidefinite n×n
matrix T .

1: Choose arbitrary, but fixed, n × m matrix G of rank 0 < s ≤ r.

2: Compute W = T †(A∗)k+1Ak .

3: Compute the QR decomposition of the matrix W in the form (3.7), where P is an

m × m permutation matrix, Q ∈ Cn×n, Q∗Q = In and R ∈ Cn×m is an upper

trapezoidal matrix.

4: Compute t = rank(T †(A∗)k+1Ak).

5: Assume that Q and R are partitioned as in . Generate the full–rank decomposition of

the matrix W by means of

W = Q1(R1P
∗). (4.1)

6: Solve the matrix equation R1P
∗AQ1X = R1P

∗.
7: Compute the output ÂD

Ak,T
= Q1X.

Numerical results on test matrices from [52,53] are presented in [40].

M. Drazin in [55], introduced the notion of a (b, c)−inverse of an element a in a semi-

group:

Definition 4.2. Let S be any semigroup and let a, b, c, y ∈ S. Then we shall call y a

(b, c)−inverse of a if both of the following two relations hold:

1. y ∈ (bSy)∩ (ySc).

2. yab = b and cay = c.

In what follows we will show that ÂD
Ak ,T

is a particular (b, c)−inverse of A.

Proposition 4.5. [40] Let S be the semigroup of all real square matrices and let also

b = ÂD
Ak ,T

and c = Ak . Then, ÂD
Ak,T

is a (b, c)−inverse of A.

Proof. The proof comes easily from propositions 4.3 and 4.4.

We will now make use of Theorem 3.2, in order to generalize its results. In what follows,

T will denote a positive semidefinite matrix having a canonical form T = U(A1 ⊕ 0)U∗,

R is the unique solution of the equation R2 = A1 and we can define

V =

[

R 0
0 0

]

= R ⊕ 0,

so that

V † =

[

R−1 0
0 0

]

= R−1 ⊕ 0.

Note that in the following theorem, Theorem 4.5, we avoid the constraint x ∈ R(T ), and

hence we can find a more general set of minimizing vectors belonging only to the set SD.
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Theorem 4.5. [40] Let T ∈ R
n×n be a positive semidefinite matrix, A ∈ R

n×n be singular

and consider the non consistent equation Ax = b. By considering the set of the Drazin

normal equation (2.11) we have that the problem of minimizing Φ(x) = 〈x, Tx〉, x ∈ SD

has a set of solutions defined by

x̂ = UV (1,3)

(

(

Ak+1UV (1,3)
)(1,4)

Ak
(

b − AUw + AV (1,3)w
)

)

+ U(I − V (1,3)V )w,

(4.2)

where w ∈ R
n is an arbitrary vector.

Proof. It is not difficult to verify

〈x, Tx〉 = 〈x, U(A1 ⊕ 0)U∗x〉 = 〈U∗x, (A1 ⊕ 0)U∗x〉 =
〈

U∗x, (R2 ⊕ 0)U∗x
〉

.

We have that U∗x = (x1, x2), x1 ∈ R(T ), x2 ∈ N (T ) and

〈U∗x, (A1 ⊕ 0)U∗x〉 = 〈x1, A1x1〉.

Therefore

〈x, Tx〉 = 〈(R ⊕ 0)U∗x, (R ⊕ 0)U∗x〉 = 〈Rx1, Rx1〉 = 〈y, y〉,

where y = Rx1, with x1 ∈ N (T )⊥. Therefore, the problem of minimizing 〈x, Tx〉 is

equivalent to minimizing ‖ y ‖2 where y = Rx1 = V U∗x.

So, we can have the set of least squares solutions using a {1, 3}-inverse:

x = UV (1,3)y + U(I − V (1,3)V )w, (4.3)

where w is an arbitrary vector.

Since Ak+1x = Akb we have Ak+1(UV (1,3)y + U(I − V (1,3)V )w) = Akb. Therefore

Ak+1UV (1,3)y + Ak+1U(I − V (1,3)V )w = Akb

and the minimal norm solution ŷ can be found using a {1, 4}-inverse this time:

ŷ = (Ak+1UV (1,3))(1,4)Ak(b − AUw + AV (1,3)V w).

Therefore, applying (4.3) it is not difficult to verify that x̂ is defined by (4.2).

Corollary 4.9. If A ∈ Rn×n is an arbitrary matrix such that ind(A) = k and T ∈ Rn×n is

a positive semidefinite matrix, then ÂD
Ak,T

is a
(

T †(A∗)k+1Ak, T †(A∗)k+1Ak
)

-inverse of

A.

4.3.2. Properties in the Symmetric Positive Definite Case

Let T be a symmetric positive definite matrix. Then, there exist an orthogonal matrix

U and a diagonal matrix D such that the decomposition T = UT DU holds. Let D
1

2 be the

positive solution of the equation R2 = D, and let D− 1

2 denotes the matrix (D
1

2 )−1 = R−1.
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Since T is positive definite matrix the existence of the matrices T−1 and R−1 is ensured.

Similarly, by X− 1

2 we denote the matrix (T
1

2 )−1 = X−1.

One solution of the matrix equation X2 = T is equal to X = UTD
1

2 U , where D
1

2 is

a diagonal matrix in which each element along the diagonal is a square root of the corre-

sponding element of D.

Let us consider the function Φ(x). Since N (T ) = {0}, we have that Φ(x) = a if and

only if x = 0. So, further in the paper we suppose that x 6= 0.

Corollary 4.10. [40] Let T be a positive definite matrix which satisfies decomposition

of the form (4.2). The following two vectors, denoted by x̂1 and x̂2, are solutions to the

problem (2.12) with T being a symmetric positive definite matrix

x̂1 = T− 1

2

(

Ak+1T− 1

2

)†
Ak

(

b +
1

2
AT−1p

)

−
1

2
T−1p (4.4)

= T− 1

2

(

AkT− 1

2

)†
Ak

(

ADb +
1

2
AT−1p

)

−
1

2
T−1p (4.5)

= T− 1

2

(

ADAkT− 1

2

)†
Ak−1

(

ADb +
1

2
AT−1p

)

−
1

2
T−1p, k ≥ 1 (4.6)

x̂2 = T− 1

2

(

AkT− 1

2

)D
ADAk

(

b +
1

2
AT−1p

)

−
1

2
AT−1p. (4.7)

Proof. The matrix X defined by X2 = T is invertible. It is equal to X = UT D
1

2 U and its

inverse is X−1 = UTD− 1

2 U = T− 1

2 . The rest of the proof follows from Theorem 4.1.

Corollary 4.11. [40] The following two vectors, denoted by x̂1 and x̂2, are solutions to the

problem (2.12) with T being a positive definite matrix for which the decomposition of the

form (4.2) holds, in the case p = 0, a = 0.

x̂1 = T− 1

2 (Ak+1T− 1

2 )†Akb (4.8)

= T− 1

2

(

AkT− 1

2

)†
ADAkb (4.9)

= T− 1

2

(

ADAkT− 1

2

)†
ADAk−1b, k ≥ 1 (4.10)

x̂2 = T− 1

2

(

AkT− 1

2

)D
ADAkb. (4.11)

Theorem 4.6. [40] Under the assumptions of Corollary 4.10 the solution x̂1 of the problem

(2.12) with T being a positive definite matrix for which decomposition of the form (4.2)

holds, has the following equivalent representations:

x̂1=UTD− 1

2

(

Ak+1UT D− 1

2

)†
(

Akb +
1

2
Ak+1UTD−1Up

)

−
1

2
UTD−1Up (4.12)

=UTD− 1

2

(

AkUTD− 1

2

)†
(

ADAkb +
1

2
AkUTD−1Up

)

−
1

2
UTD−1Up (4.13)

=UTD− 1

2

(

ADAkUT D− 1

2

)†
(

ADAk−1b +
1

2
AkUTD−1Up

)

−
1

2
UT D−1Up,

k ≥ 1, (4.14)
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where T−1 = UT D−1U .

Proof. Since T− 1

2 = UTD− 1

2 U , let us denote U1 = Ak+1UTD− 1

2 and U2 = U . Noting

that

R(U1
TU1U2) ⊂ R(U2) = R

n×n, R(U2U2
T U1

T ) = R(U1
T ),

we conclude that the reverse-order law for the matrices U1 and U2 in (4.4), (4.5) and (4.6)

holds. Applying the reverse-order law on the representations (4.4), (4.5) and (4.6) we im-

mediately obtain desired representations.

Corollary 4.12. [40] Under the assumptions of Theorem 2.3 the solution x̂1 of the problem

(2.12) with T being a positive definite matrix for which the decomposition of the form (4.2)

holds, has the following equivalent representations:

x̂1 = UT D− 1

2

(

Ak+1UTD− 1

2

)†
Akb (4.15)

= UT D− 1

2

(

AkUTD− 1

2

)†
ADAkb (4.16)

= UT D− 1

2

(

ADAkUTD− 1

2

)†
ADAk−1b, k ≥ 1. (4.17)

5. Some Possible Perspectives

In this section we describe several possibilities for further investigations on the consid-

ered topic.

(A) In the general case, it is possible to consider the minimization of the functional

Φ(x) under a more general constraint set

x ∈ SG, SG =
{

x : x ∈ R
n, GAx = Gb, A ∈ R

m×n
r , G ∈ R

n×m
s , 0 < s ≤ r,

rank(GA) = rank(G)}
(5.1)

which includes all previously considered constraints, namely x ∈ S and x ∈ SD. Under

the assumption rank(GA) = rank(G), taking into account

GAx ∈ R(GA), Gb ∈ R(G) = R(GA),

we conclude that the system (5.1) is consistent. Since 〈x, Tx〉 = 0 for all x ∈ N (T ), we

will investigate the constrained quadratic minimization problem

minimize Φ0(x), x ∈ SG ∩N (T )⊥. (5.2)

(B) Moreover, instead of analyzing the set S, it is possible to analyze the following set,

which presents the sets of all solutions of the normal equation of the system Ax = b:

SM = {x : A∗Ax = A∗b}. (5.3)

(C) In the case A ∈ C
n×n it seems interesting to generalize the constraint set ΩAk and

consider the constraint set

ΩY =
{

Y : AY = D,R(Y ) ⊆ R(Ak), R(D) ⊆ R(Ak).
}

(5.4)
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Any solution of this problem should lead to a generalization of the following result

from [56].

Theorem 5.1. [56] Let A ∈ Cn×n with ind(A) = k, D ∈ Cn×m and R(D) ⊆ R(Ak).

Then the restricted matrix equation

AY = D, R(Y ) ⊆ R(Ak) (5.5)

has a unique solution

Y = ADD. (5.6)

An analogous generalization of the dual result and a general result from [56] can be

derived.

Theorem 5.2. [56] Let B ∈ C
m×m with ind(B) = k, D ∈ C

n×m and N (D) ⊇ N (Bk).

Then the restricted matrix equation

XB = D, N (X) ⊇ N (Bk) (5.7)

has a unique solution

Y = DBD . (5.8)

Theorem 5.3. [56] Let A ∈ Cn×n with ind(B) = k1, B ∈ Cm×m with ind(B) = k1,

k = max{k1, k2} and D ∈ Cn×m. Suppose R(D) ⊆ R(Ak) and N (D) ⊇ N (Bk). Then

the restricted matrix equation

AXB = D, R(X) ⊇ R(Ak),N (X) ⊇ N (Bk) (5.9)

has a unique solution

Y = ADDBD . (5.10)

5.1. Definition of the Minimal (T, G) Inverse

In this subsections we investigate several preliminary results concerning proposition

(A).

Lemma 5.1. The vector

x̂ = X†
(

GAX†
)†

Gb, X2 = T (5.11)

is a solution of the problem (5.2).

Proof. Let X2 = T and x ∈ N (T )⊥ = R(T ). Then

Φ0(x) = 〈x, Tx〉 = 〈x, X2x〉 = 〈Xx, Xx〉.

If y = Xx, then the problem of minimizing Φ0(x) is equivalent to the problem of mini-

mizing ‖y‖. Since y = Xx and x ∈ R(X), we have that x = X†y. In addition, because

x ∈ SG ∩N (T )⊥, it follows that GAx = Gb and so, GAX†y = Gb.

In this case, the minimal norm solution for y will be y = (GAX†)†Gb, and so Xx =

(GAX†)†Gb and therefore the minimal norm solution of (5.2) is the vector x̂ defined by

(4.10).
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50 Predrag S. Stanimirović, Dimitrios Pappas and Vasilios N. Katsikis

Definition 5.1. Let T ∈ R
n×n be a positive semidefinite Hermitian matrix, G ∈ R

n×m be

a singular matrix and let A ∈ Rm×n be also singular, such that rank(GA) = rank(G).

Then, the n × m matrix

Â
(2)
G,T :=

(

T †
)

1

2

(

GA
(

T †
)

1

2

)†

G

=
(

T
1

2

)†
(

GA
(

T
1

2

)†
)†

G

(5.12)

is called the T -minimal G-constrained inverse of A (or the minimal (T, G) inverse of A).

Corollary 5.1. The matrix defined by (5.12) is a minimizer of the minimization problem

minΨ(Z) = 〈Z, TZ〉, where T is a positive n × n matrix and X ∈ R
n×m, subject to the

constraint set

Z∈ΩG, ΩG ={Z : X ∈ R
n×m, GAZ = G, A ∈ R

m×n
r , G ∈ R

n×m
s , 0 < s ≤ r}.

Remark 5.1. The vector û(2) = Â
(2)
G,T b is a minimal T semi-norm solution of the consistent

equation GAx = Gb, restricted on N (T )⊥ = R(T ) = R(T ∗).

In the general case, it is possible to generalize the results derived in [57] concerning

with the general solution of a general restricted matrix equation

AXB = D,R(X) ⊆ T,N (X)⊇ S, (5.13)

where A ∈ C
m×n, B ∈ C

p×q, D ∈ C
m×q and T , S are subspaces of C

n and C
p, respec-

tively.

5.2. Particular Cases of the Minimal (T, G) Inverse

In accordance with previously presented results, it is clear that such a constrained

quadratic programming problem implies a definition of a new kind of generalized in-

verse. In the present article we define corresponding generalized inverse, called the minimal

(T, G) inverse of A, and investigate its basic properties.

The particular case G∗G = Im gives the results corresponding to constrained optimiza-

tion from [35,46] and produces the restricted generalized inverse Â†
Im,T from [34].

In the case m = n, for the particular choice G = Ak we obtain the results of con-

strained optimization form [39] and the generalized inverse ÂD
Ak ,T

, which is introduced and

investigated in [40].

Surprising minimality property of a particular class of {2, 3} inverses can be obtained

from Â
(2)
G,I (where the choice T = I is assumed). Corollary 5.2 shows that A

(2,3)

N (GA)⊥,N (G)
b

is a minimizer of 〈x, x〉 subject to constraint GAx = Gb.

Corollary 5.2. Let A ∈ Cm×n be given and G ∈ Cn×m is chosen matrix satisfying

rank(GA) = rank(G). Then the following statement is valid in the case T = I:

Â
(2)
G,I = A

(2,3)

N (GA)⊥,N (G)
. (5.14)
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Proof. It is clear that

Â
(2)
G,I = (GA)†G.

The rest of the proof can be completed using known representations of {2, 3}-inverses from

[58].

Corollary 5.3. Let U be appropriate positive semidefinite n × n matrix. For a given A ∈

Cm×n in the case G = U
1

2 the outer inverse Â
(2)
G,I becomes the weighted Moore-Penrose

inverse:

Â
(2)
G,T = A†

U,T . (5.15)

Proof. Follows from known representation of the weighted Moore-Penrose inverse with

singular weights from [59].

Corollary 5.4. Let A ∈ Cm×n be given and G ∈ Cn×m satisfies rank(GA) = rank(G)

and G∗G = Im. Then

Â
(2)
G,I = A†. (5.16)

Proof. Follows from the representation of outer inverses and uniqueness of A† =

A
(2)
R(A∗),N (A∗).

6. Conclusion

We investigate the quadratic minimization problem under linear constraints. Our global

objective is to define and investigate the restricted generalized inverses corresponding to

minimization of constrained quadratic form.

Results derived in [34, 35] are surveyed in the third section. The constraint set defined

by the linear system Ax = b is considered in this section. As a consequence, the T-restricted

weighted generalized inverse of a singular matrix A with respect to a positive semidefinite

matrix T is considered. It is interesting to mention that the matrix T defines a seminorm

for the space. The generalized inverse is denoted by Â†
Im,T b and it represents a minimal T

semi-norm least squares solution of Ax = b, restricted on the range of T . It is assumed that

T is positive semidefinite, so the minimal seminorm solution is considered for all vectors

belonging to N (T )⊥.

The originality of the results derived in [39, 40] is the assumption that the constraint

equation Ax = b is not consistent. In this case, the constraints set S is empty. This situation

may appear in many practical applications. Therefore, the minimization is an approximate

solution of the original problem, and it is obtained using the Drazin inverse solution of the

set S. This intention leads to the usage of the constraint set SD, defined by the linear system

Ak+1x = Akb.

Several possibilities for further investigations on the quadratic minimization under lin-

ear constraint sets are presented and preliminary considered.

The proposed solutions of considered optimization problems can find applications also

in many financial problems, apart from the usual matrix optimization areas such as statisti-

cal modeling, linear regression, electrical networks, filter design, etc.
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[51] P.S. Stanimirović, D. Pappas, V.N. Katsikis, I.P. Stanimirović, Full–rank representa-
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OF HOMOGENEOUS MATRIX POLYNOMIALS USING
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Abstract

In systems and control theory, Linear Time Invariant (LTI) descriptor (Differential-

Algebraic) systems are intimately related to the matrix pencil theory. Actually, a

large number of systems are reduced to the study of differential (difference) systems

S (F, G) of the form:

S (F, G) : F ẋ(t) = Gx(t) (or the dual Fx = Gẋ(t)) ,

and

S (F, G) : Fxk+1 = Gxk (or the dual Fxk = Gxk+1) , F, G ∈ C
m×n

and their properties can be characterized by the homogeneous pencil sF − ŝG. An es-

sential problem in matrix pencil theory is the study of invariants of sF − ŝG under the

bilinear strict equivalence. This problem is equivalent to the study of complete Pro-

jective Equivalence (PE), EP , defined on the set Cr of complex homogeneous binary

polynomials of fixed homogeneous degree r. For a f (s, ŝ) ∈ Cr, the study of invari-

ants of the PE class EP is reduced to a study of invariants of matrices of the set C
k×2

(for k > 3 with all 2 × 2-minors non-zero) under the Extended Hermite Equivalence

(EHE), Erh. In this chapter, we present a review of the most interesting properties

of the PE and the EHE classes. Moreover, the appropriate projective transformation

d ∈ RGL (1, C/R) is provided analytically [1].

∗E-mail address: A.Pantelous@liverpool.ac.uk
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1. Introduction

The matrix pencils sF−G and F−ŝG can be defined by the homogeneous matrix pencil

sF − ŝG (or equivalently by an ordered pair of matrices (F,−G)), since the existence of

the important notion of duality -the so-called elementary divisor type duality or integrator-

differentiator type duality- has already been demonstrated in the literature; see [2]. Thus,

the dual matrix pencils sF − G and F − ŝG are related by the special type of bilinear

transformation: s → 1
ŝ , which clearly transforms relatively, the points 0, ∞, a 6= 0 of the

compactified complex plain (C ∪ {∞}) (or of the Riemann sphere) to the points ∞, 0, 1
a

;

see for further details [3].

In the existing literature, the study of bilinear-strict equivalence of matrix pencils has

been initiated by the work of Turnbull and Aitken ([4]). In this early research work, the

co-variance property of invariant polynomials and the invariant of minimal indices are es-

tablished. Kalogeropoulos (see [3]) defines a complete set of invariants for the bilinear-strict

equivalence class of a matrix pencil (or equivalently of an ordered pair (F, G)).

Let us define (F, G) ∈ Fm×n × Fm×n (where F is a field, i.e., F = R or C) and (s, ŝ)

be a pair of indeterminates. Thus the polynomial matrix sF − ŝG ∈ F
m×n [s, ŝ] is defined

as the homogeneous matrix pencil of the pair (F, G). Clearly, sF − ŝG is a matrix over

the ring F [s, ŝ], i.e., polynomials in (s, ŝ) with coefficients from F, which might also be

viewed as a matrix over the (algebraic) rings F (s) [ŝ] or F (ŝ) [s]. Now, the following series

of definitions are significant for what they follow.

Definition 1. Denote

L ,
{
L : L = (F,−G) ; F, G ∈ F

m×n
}

,

to be the set of ordered pairs of m × n-matrices and

Θ , {θ : θ = (s, ŝ)} ,

to be the set of ordered pairs of indeterminates.

Now, for every L = (F,−G) ∈ L and θ = (s, ŝ) ∈ Θ, [L] =
[

F −G
]
∈ F

m×2n is

called the matrix representation of L. The homogeneous polynomial matrix

Lθ , L (s, ŝ) =
[

F −G
] [

sIn

ŝIn

]
= sF − ŝG,

is referred as the θ-matrix pencil of L.

Definition 2. Define the following sets of matrix pencils

Lθ , {Lθ : for a fixed θ ∈ Θ and for every L ∈ L} ,

L (Θ) , {Lθ : for every θ ∈ Θ and for every L ∈ L} .
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In the following part of the introduction, three types of equivalence are presented on

L (or equivalently on L (Θ)). These equivalence relations are generated by the action of

appropriate transformation groups acting on L (or equivalently on L (Θ)). Consider first

the set

K ,
{
k : k = (M, N) ; M ∈ F

m×m, N ∈ F
2n×2n; det M, detN 6= 0

}

and a composition rule (∗) defined on K as follows:

∗ : K× K → K : for every k1 = (M1, N1) ∈ K and k2 = (M2, N2) ∈ K,

then k1 ∗ k2 , (M1, N1) ∗ (M2, N2) = (M1M2, N2N1) .

We can easily verify that (K, ∗) is a group with identity element (Im, I2n). The action of K
on L is defined by

◦ : K ×L → L : for every k ∈ K, L ∈ L, then k ◦ L , k ◦ (F,−G) = L′ ∈ L : [L′] = M [L] N.

Here, the action ”◦” defines an equivalence relation EK on L, and EK (L) denotes the

equivalence class or orbit of L ∈ L under K.

(i) (Strict Equivalence) The subgroup (H, ∗) of (K, ∗), where

H ,

{
h : h = (R, P ) ; R ∈ F

n×n, P =

[
Q O

O Q

]
, Q ∈ F

n×n; det R, det P 6= 0

}
,

is called the Strict-Equivalence Group (SEG). The action of H on L is defined by

◦ : H×L → L : for every h ∈ H and for a L ∈ L, then

h ◦ L , (R, P) ◦ (F,−G) = L′ ∈ L :
[
L′

]
= R [L]P.

The equivalence relation EH, which is defined on L as above, is called Strict-
Equivalence (SE), see also [5] and [3]. Two pencils L1

θ = sF1 − ŝG1 ∈ Lθ, and

L2
θ = sF2 − ŝG2 ∈ Lθ are strictly equivalent, i.e., L1

θEHL2
θ , if and only if there exists

h ∈ H : (F2,−G2) = h ◦ (F1,−G1). By EH (F, G) is denoted the SE class or orbit of
Lθ = sF − ŝG.

(ii) (Bilinear Equivalence) The subgroup (B, ∗) of (K, ∗), where

B ,
{

b : b =

(
Im,

[
αIn βIn

γIn δIn

])
= (Im, Td) , d =

[
α β
γ δ

]
∈ F

2×2; det d = αδ − βγ 6= 0

}

is called the Bilinear-Equivalence Group (BEG), see [6]. Every b ∈ B is generated by a

projective transformation d =

[
α β

γ δ

]
∈ F2×2. The action of B on L is defined by

b ◦ L , b ◦ (F,−G) = L′ =
(
F ′,−G′

)
∈ L :

[
L′

]
= Im [L]Td.

The equivalence relation EB, which is defined on L, is called Bilinear-Equivalence (BE).

Two pencils L1
θ = sF1 − ŝG1 ∈ Lθ , and L2

θ′ = λF2 − λ̂G2 ∈ Lθ′ , where θ = (s, ŝ) ∈ Θ
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and θ′ =
(
λ, λ̂

)
∈ Θ are bilinearly equivalent, i.e., L1

θEBL2
θ′ , if and only if there exists a

transformation d : (s, ŝ) →
(
λ, λ̂

)
and thus a b ∈ B generated by d, such that (F2,−G2) =

b ◦ (F1,−G1). By EB (F, G) is denoted the BE class or orbit of Lθ = sF − ŝG, or

equivalently L = (F,−G). Note that the composition rule (∗) is not commutative on K;

However, it can be easily shown that for every b ∈ B and for every h ∈ H, the equality,

b ∗ h = h ∗ b holds, see also the following lemma; see [3].

Lemma 1. For every b ∈ B and for every h ∈ H, then b ∗ h = h ∗ b.

Proof. Start with

h∗b =

(
R,

[
Q O

O Q

])
∗

(
Im,

[
αIn βIn

γIn δIn

])
=

(
R · Im,

[
αIn βIn

γIn δIn

]
·

[
Q O

O Q

])

=

(
R,

[
αQ βQ
γQ δQ

])
=

(
Im · R,

[
Q O

O Q

]
·

[
αIn βIn

γIn δIn

])

=

(
Im,

[
αIn βIn

γIn δIn

])
∗

(
R,

[
Q O

O Q

])
= b ∗ h.

(iii) (Bilinear-Strict Equivalence) The subgroup (H−B, ∗) of (K, ∗), where

H−B , {r : r = h ∗ b; for every h ∈ H and for every b ∈ B}

is called the Bilinear-Strict Equivalence Group (BSEG). The action of H−B on L is defined

by

◦ : H−B ×L → L : for every r ∈ H− B,

and for a L = (F,−G) ∈ L, then

r ◦ L , (h ∗ b) ◦ (F,−G) = h ◦ {b ◦ (F,−G)} = b ◦ {h ◦ (F,−G)}

= L′ =
(
F ′,−G′

)
∈ L :

[
L′

]
= ImR [L]FTd,

or equivalently

[
F ′ −G′

]
, ImR

[
F −G

]
Q

[
αIn βIn

γIn δIn

]

=
[

αRFQ − γRGQ βRFQ − δRG Q
]
,

where b =

(
Im,

[
αIn βIn

γIn δIn

])
and h =

(
R,

[
Q O

O Q

])
.

The equivalence relation EH−B , which is defined on L, is called Bilinear-Strict

Equivalence (BSE), see [6]. Two pencils L1
θ = sF1 − ŝG1 ∈ Lθ , and L2

θ′ = λF2 − λ̂G2 ∈

Lθ′ , where θ = (s, ŝ) ∈ Θ and θ′ =
(
λ, λ̂

)
∈ Θ are bilinearly-strict equivalent, i.e.,

L1
θEH−BL2

θ , if and only if there exists a transformation d : (s, ŝ) →
(
λ, λ̂

)
and thus a

b ∈ B generated by d, and an h ∈ H such that

(F2,−G2) = (h ∗ b) ◦ (F1,−G1) .
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The matrix form of the above condition is given by
[
L2

θ′

]
=

[
(h ∗ b) ◦ L1

θ

]
, or equivalently

[
F2 −G2

]
, R

[
F1 −G1

] [
αQ βQ
γQ δQ

]
=

[
αRF1Q − γRG1Q βRF1Q − δRG1 Q

]
.

By EH−B (F, G) is denoted the BSE class or orbit of Lθ = sF − ŝG, or equivalently of

L = (F,−G).

Proposition 1. [3] Let L ∈ L, b ∈ B, and h ∈ H

(i) If L
b
→ b ◦L , Lb, then EH (L)

b
→EH

(
Lb

)
is a bijection.

(ii) If L
h
→h ◦ L , Lh, then EB (L)

h
→EB

(
Lh

)
is a bijection.

Proof. (i) Let L′ ∈ EH
(
Lb

)
, then there exists h ∈ H : L′ = h ◦

(
Lb

)
and since Lb = b ◦L,

it derives that L′ = h ◦ (b ◦L) = b ◦ (h ◦ L) = b ◦
(
Lh

)
, where Lh = h ◦L ∈ EH (L) , so

b◦
(
Lh

)
= L′. Now, if we assume that there exists Lh′

∈ EH (L), such that b◦
(
Lh′

)
= L′,

then b ◦ (h′ ◦ L) = L′ = h ◦ (b ◦ L) or h′ ◦
(
Lb

)
= h ◦

(
Lb

)
.

Now, we further assume that h = (R, P), h′ = (R′, P ′), then R
[
Lb

]
P = R′

[
Lb

]
P ′

implies that
(
R′−1R, PP ′−1

)
= (Im, I2n) and thus R′ = R, P ′ = P or h = h′. The proof

of part (ii) follows along similar steps.

Note that the action of h = (R, P) ∈ H on the pencil Lθ = sF −ŝG may be interpreted

as

b ◦Lθ = R
[

F −G
] [

Q O

O Q

][
sIn

ŝIn

]
= R (sF − ŝG)Q = sF ′ − ŝG′ = L′

θ,

and thus SE implies a coordinate transformation in the domain and co-domain of the ordered

pair (F,−G), but not a change in the indeterminates (s, ŝ). However, the action of b =
(Im, Td) on Lθ = sF − ŝG may be interpreted as

b ◦ L (s, ŝ) = Im

[
F −G

] [
αIn βIn

γIn δIn

][
λIn

λ̂In

]

= λ (αF − γG)− λ̂ (−βF + δG)

= λF ′ − λ̂G′ = L′
θ′ ,

which clearly expresses a change in the indeterminates from (s, ŝ)
d
→

(
λ, λ̂

)
by the bi-linear

transformation:

d :

[
s
ŝ

]
=

[
α β
γ δ

] [
λ

λ̂

]
⇔

{
s = αλ + βλ̂

ŝ = γλ + δλ̂
(1)

where α, β, γ, δ ∈ F and αδ − βγ 6= 0.

Thus, as a conclusion of the introductive section, our bilinear transformation expresses

a coordinate type of transformation in the indeterminates but not in the domain and co-

domain of the pair (F,−G). The action of r = h ∗ b on the matrix pencil Lθ = sF − ŝG
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has the features of both H and B groups and thus it implies a coordinate transformation

in the domain and co-domain of (F,−G) and a change of indeterminates from (s, ŝ) to(
λ, λ̂

)
according to the expression (1). The nature of the transformation d, that generates

the transformation b ∈ B, is discussed next.

It is known, see for instance [7], that a n-dimensional projective domain over a field

F or a projective space Pn (F) is a set of entities (usually called points of the space) that

admits a certain class {R} of representation by homogeneous (xo, x1, . . . , xn) in F.

This class is such that, if R0 is any representation, the whole class {R} consists of all

those representations that can be obtained from R0 by using a non-singular linear transfor-

mation, i.e.,

x′
i =

n∑

j=0

aijxj , for i = 0, 1, . . . , n.

Thus, the representation R of Pn (F) are connected by a group of non-singular linear trans-

formations. This group is referred to as the general projective group and it is denoted by

PGL (n; F). In our case, n = 1 and F will be replaced by C/R, i.e., the projective domain

P1 (C) is the projective straight line on the compactified complex plain (C ∪ {∞}); the

{R} is the class of all bilinear transformations d : (s, ŝ) →
(
λ, λ̂

)
defined by

d : s = αλ + βλ̂, ŝ = γλ + δλ̂; α, β, γ, δ ∈ R, αδ − βγ 6= 0.

Consequently, we are interested for subgroups of {R}, {RR} for which α, β, γ, δ ∈ R .

The nature of homogeneous coordinates of points in a line and the geometric meaning of d
has been discussed analytically in [8].

2. Significant Properties of the Set of SE Invariants under BE

In this section, the basic properties of the set of SE invariants are revisited. Now, let

us remind that L = (F,−G) ∈ J , θ = (s, ŝ) ∈ Θ and Lθ , L (s, ŝ) = sF − ŝG be the

associated pencil for the relative pair of intermediates θ = (s, ŝ), then we will assume that

p = rankF(s,ŝ)Lθ 6 min{m, n}.

The Smith form of L(s, ŝ) over F[s, ŝ] is defined by

S(s, ŝ) =

[
S∗

p(s, ŝ) Op, n−p

Om−p, p Om−p, n−p

]
,

where

S∗
p(s, ŝ) = diag

{
f̃1(s, ŝ), f̃2(s, ŝ), . . . , f̃p(s, ŝ)

}
and f̃i(s, ŝ) ∈ F[s, ŝ],

are the invariant polynomial of L(s, ŝ) over F[s, ŝ] with the property that f̃i(s, ŝ) divides

f̃i+1(s, ŝ) for every i = 1, 2, ..., p and f̃i(s, ŝ) = 0, for i > p.
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The set of
{
f̃i(s, ŝ), i = 1, 2, ..., p

}
is defined by the standard Smith algorithm,

f̃i(s, ŝ) ,
di(s, ŝ)

di−1(s, ŝ)
, for i = 1, 2, ..., p and d0(s, ŝ) = 1,

where di(s, ŝ) is the ith-determinantal divisor of Lθ , which is the greatest common divisor

(GCD) of all i × i- minors of Lθ; see for instance for more details [9] and the references

therein.

Let k is non-zero trivial elements in
{
f̃i(s, ŝ), i = 1, 2, ..., p

}
, i.e.,

S∗
p(s, ŝ) = diag{1, 1, . . . , 1︸ ︷︷ ︸

k

, f1(s, ŝ), . . . , fp−k(s, ŝ)},

k is the power of Lθ and the ordered set F (F, G) = {fi(s, ŝ); i = 1, 2, ..., p− k} is called

as the homogeneous invariant polynomial set of Lθ. Note that the order is defined by the

divisibility property, i.e., fi(s, ŝ) | fi+1(s, ŝ) for every i = 1, 2, ..., p− k − 1.

Here, it is important to denote the set of column and row minimal indices, respectively

Ic (F, G) (set of c.m.i) and Ir (F, G) (set of r.m.i) of Lθ. It is a well-known result, see [5]

and [4], that the set F (F, G), Ic (F, G), and Ir (F, G) form a complete and independent

set of invariants for the SE class EH (F, G)EH (F, G). In the next lines, the action of b ∈ B
into the set of SE invariants is investigated. At the end of this section, we will transfer

our study into the determination of a projective transformation, d ∈ PGL (1, C/R), onto

homogeneous polynomials, see also [5] and [6].

Let us define Rd {θ} be the set of homogeneous polynomials of degree d with coeffi-

cients on R for all the possible indeterminates θ = (s, ŝ) ∈ Θ. Now, the action of d on the

polynomial f(s, ŝ) ∈ Rd {θ} is defined by (2):

d ◦ f(s, ŝ) = f̃(λ, λ̂) = f(αλ + βλ̂, γλ + δλ̂). (2)

Two polynomials, f(s, ŝ) and g(λ, λ̂) ∈ Rd {θ}, are projectively equivalent (PE),

f(s, ŝ)EPg(λ, λ̂), if there is d ∈ PGL (1, C/R) and a c ∈ R\ {0} such that

d ◦ f(s, ŝ) = c · g(λ, λ̂). (3)

Clearly, (3) plays a significant role in this paper, since (3) defines the Projective Equiv-

alence (PE) on Rd {θ}. Let

F1 = {fi(s, ŝ) ∈ Rdi
{θ} ; i = 1, 2, ..., p} , F2 =

{
f̃i(λ, λ̂) ∈ Rdi

{θ} ; i = 1, 2, ..., p
}

be two ordered sets of homogeneous polynomials.

F1 and F2 are projectively equivalent, F1EPF2, if and only if fi(s, ŝ)EP f̃i(λ, λ̂) for

every i = 1, 2, ..., p and for the same transformation d ∈ PGL (1, C/R). The projective

equivalence class of f(s, ŝ) and the set F are denoted by EP (f) and EP (F ), respectively.
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Lemma 2. [3] Let f1(s, ŝ) ∈ Rd1
(θ), and f2(s, ŝ) ∈ Rd2

(θ) and g(s, ŝ) ∈ Rp(θ) be the

GCD. Let d ∈ PGL (1, C/R) : (s, ŝ)
d
→

(
λ, λ̂

)
, and

f̃1(λ, λ̂) = d ◦ f1(s, ŝ), f̃2(λ, λ̂) = d ◦ f2(s, ŝ) and g̃(λ, λ̂) = d ◦ g(s, ŝ).

Then g̃(λ, λ̂) is a GCD of f̃1(λ, λ̂), f̃2(λ, λ̂).

Proof. Since g(s, ŝ) is a GCD of f1(s, ŝ) and f2(s, ŝ), then

f1(s, ŝ) = h1(s, ŝ) · g(s, ŝ) and f2(s, ŝ) = h2(s, ŝ) · g(s, ŝ)

where h1(s, ŝ) and h2(s, ŝ) are homogeneous polynomials.

Clearly, d ◦ f1(s, ŝ) = (d ◦ h1(s, ŝ)) (d ◦ g(s, ŝ)). Now, we assume that

h̃1(λ, λ̂) = d ◦ h1(s, ŝ) and g̃(λ, λ̂) = d ◦ g(s, ŝ).

Similarly, we have d◦f2(s, ŝ) = (d ◦ h2(s, ŝ)) (d ◦ g(s, ŝ)) and d◦h2(s, ŝ) = h̃2(λ, λ̂).
Then, we obtain

f̃1(λ, λ̂) = h̃1(λ, λ̂) · g̃(λ, λ̂) and f̃2(λ, λ̂) = h̃2(λ, λ̂) · g̃(λ, λ̂).

Consequently, it is derived that

g̃(λ, λ̂)
∣∣∣ f̃1(λ, λ̂), and g̃(λ, λ̂)

∣∣∣ f̃2(λ, λ̂).

Let us consider that the GCD of f̃1(λ, λ̂) and f̃2(λ, λ̂) is g̃′(λ, λ̂).

Since g̃(λ, λ̂) is the GCD of f̃1(λ, λ̂) and f̃2(λ, λ̂), it holds that

g̃(λ, λ̂)
∣∣∣ g̃′(λ, λ̂).

So g̃′(λ, λ̂) = g̃(λ, λ̂) · φ̃(λ, λ̂), where φ̃(λ, λ̂) is a homogeneous polynomial.

By applying the inverse transformation d−1 : (λ, λ̂) → (s, ŝ), we obtain

d−1 ◦ g̃(λ, λ̂) =
(
d−1 ◦ g̃(λ, λ̂)

) (
d−1 ◦ φ̃(λ, λ̂)

)
⇔ ḡ(s, ŝ) = g(s, ŝ) · φ(s, ŝ)

(note that ḡ(s, ŝ) = d−1 ◦ g̃(λ, λ̂) and φ(s, ŝ) = d−1 ◦ φ̃(λ, λ̂)). Thus, we take

g(s, ŝ) | ḡ(s, ŝ). (4)

However, since we have

g̃(λ, λ̂)
∣∣∣ f̃1(λ, λ̂) ⇒ d−1 ◦ g̃(λ, λ̂)

∣∣∣ d−1 ◦ f̃1(λ, λ̂), then ḡ(s, ŝ) | f1(s, ŝ).

Moreover, we have also

g̃(λ, λ̂)
∣∣∣ f̃2(λ, λ̂) ⇒ d−1 ◦ g̃(λ, λ̂)

∣∣∣ d−1 ◦ f̃2(λ, λ̂) ⇔ g(s, ŝ) | f2(s, ŝ).
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From the statement, g(s, ŝ) is the GCD of f1(s, ŝ) and f2(s, ŝ), so

ḡ(s, ŝ) | g(s, ŝ) (5)

From (4) and (5), we obtain

ḡ(s, ŝ) = g(s, ŝ) ⇒ d−1 ◦ ḡ(s, ŝ) = d−1 ◦ g(s, ŝ) ⇔ g̃(λ, λ̂) = g̃(λ, λ̂).

Consequently, g̃(λ, λ̂) is the GCD of f̃1(λ, λ̂) and f̃2(λ, λ̂).

An immediate consequence of the above lemma is the following interesting and known

Proposition, see [4].

Proposition 2. [4] Let L1(s, ŝ) = sF1 − ŝG1, and L2(λ, λ̂) = λF2 − λ̂G2 ∈ L (Θ), and

define

F (F1, G1) =
{
f̃i(s, ŝ); i = 1, 2, . . . , p1 − k1

}
,

F (F2, G2) =
{

f̃i(λ, λ̂); i = 1, 2, . . . , p2 − k2

}

be the corresponding homogeneous invariant polynomial sets of L1(s, ŝ) and L2(λ, λ̂),

where (p1, k1), (p2, k2) are the ordered pairs with rank (p) and power (k), respectively.

If L1(s, ŝ)EH−BL2(λ, λ̂) for h ∈ H and b ∈ B is generated by d ∈ PGL (1, C/R)

such that (s, ŝ)
d
−→

(
λ, λ̂

)
, then

(i) p1 = p2 = p and k1 = k2 = k.

(ii) F (F1, G1)EPF (F2, G2).

Another, quite interesting result of the effect of SBE (EH−B) on the sets Ic (F, G) and

Ir (F, G) of Lθ is given by the next Proposition, see again [4]. Here, a slightly different

proof is presented.

Proposition 3. Let L1(s, ŝ) = sF1 − ŝG1, and L2(λ, λ̂) = λF2 − λ̂G2 ∈ L (Θ), and

Ic (F1, G1) , Ic (F2, G2) and Ir (F1, G1) , Ir (F2, G2)

be the corresponding sets of column minimal indices (cmi) and row minimal indices (rmi)

of L1(s, ŝ) and L2(λ, λ̂), respectively. If L1(s, ŝ)EH−BL2(λ, λ̂) then

Ic (F1, G1) = Ic (F2, G2) andIr (F1, G1) = Ir (F2, G2) .

Proof. Generally speaking, let assume that U(s, ŝ) is a homogeneous minimal basis for

Nr {sF1 − ŝG1} and let u(s, ŝ) be a minimal degree vector of U(s, ŝ).

Here, we shall mention that the linear transformation (s, ŝ)
d
−→

(
λ, λ̂

)
can not increase

the degree of the vector ũ(λ, λ̂) = d◦u(s, ŝ), which lays into the set of Nr

{
λF2 − λ̂G2

}

(where λF2 − λ̂G2 is the transformed pencil). On contrary, our linear transformation is

possible to decrease the degree of ũ(λ, λ̂) by canceling some common factors with the
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vector u(s, ŝ). However, considering the last case, if we apply the inverse transformation

d−1 :
(
λ, λ̂

)
→ (s, ŝ), a new vector, u′(s, ŝ) in Nr {sF1 − ŝG1} is obtained. This fact

contradicts our initial hypothesis, since u(s, ŝ) is a minimal degree vector of U(s, ŝ).

Consequently, we have proved Ic (F1, G1) = Ic (F2, G2) .
Using exactly similar approach to the transposed pencil (sF1 − ŝG1)

t
, the second

equality can be straightforwardly proved.

Indeed, Proposition 2 and 3 express respectively the covariance property of the homo-

geneous invariant polynomials and the invariance property of the sets of cmi and rmi of Lθ

under EH−B equivalence. Now, by simply combining the two above-mentioned results, the

following significant Theorem (criterion) for the EH−B equivalence of the matrix pencils is

finally obtained.

Theorem 1. [3] Let L1(s, ŝ) = sF1 − ŝG1, and L2(λ, λ̂) = λF2 − λ̂G2 ∈ L (Θ).

L1(s, ŝ)EH−BL2(λ, λ̂) if and only if the following conditions hold true:

(i) Ic (F1, G1) = Ic (F2, G2) and Ir (F1, G1) = Ir (F2, G2).

(ii) F (F1, G1)EPF (F2, G2).

Proof. The necessity (”⇒”) derives immediately by simply combining Proposition 2 and

3. Now, in order to prove the sufficiency (”⇐”), we will assume that (i) and (ii) hold.

Since F (F1, G1)EPF (F2, G2), then L1(s, ŝ) and L2(λ, λ̂) have the same rank

(p1 = p2 = p) and the same power (k1 = k2 = k), and there exists a transformation

d ∈ PGL (1, C/R) such that (s, ŝ)
d
−→

(
λ, λ̂

)
, and

d ◦ f2, i(λ, λ̂) = C2, if̃2, i(s, ŝ) ∀ i = 1, 2, . . . , p − k.

The transformation d ∈ PGL (1, C/R) generates a b ∈ B such that

b ◦L2(λ, λ̂) = sF̃2 − ŝG̃2 = L̃2(s, ŝ).

Since L̃2(s, ŝ)EBL2(λ, λ̂), then

Ic

(
F̃2, G̃2

)
= Ic (F2, G2) = Ic (F1, G1) ,

and

Ir

(
F̃2, G̃2

)
= Ir (F2, G2) = Ir (F1, G1) .

Furthermore, the sets of homogeneous invariant polynomials of L̃2(s, ŝ) and L̃1(s, ŝ)

differ only by a scalar value c (see the definition of EP -equivalence).

Thus, L̃2(s, ŝ) and L̃1(s, ŝ) have the same Smith form over R [s, ŝ] (or equivalently the

same sets of e.d.), and the same sets of cmi and rmi. Consequently, L̃2(s, ŝ)EHL1(s, ŝ).

Therefore, there exists a h ∈ H such that L1(s, ŝ) = h ◦ L̃2(s, ŝ).

Given now that L̃2(s, ŝ) = b ◦L2(λ, λ̂), it follows L1(s, ŝ) = (h ∗ b)◦L2(λ, λ̂), and

thus L1(s, ŝ)EH−BL2(λ, λ̂).
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As a strong result of the above-mentioned theorem, the key factor of the characterization

of EH−B-equivalence is the EP-equivalence, which is defined on the set of homogeneous

invariant polynomialF (F, G) of the pencil sF − ŝG. Consequently, in order to investigate

if two pencils are EH−B equivalent, it is equivalent to investigate the conditions under which

two polynomials f(s, ŝ), f̃(λ, λ̂) ∈ Rd(Θ) are EP -equivalent. Now, the problem is being

transposed to determine the conditions under which f(s, ŝ)EP f̃(λ, λ̂). Equivalently, the

complete and independent set of invariants for the orbit EP (f (s, ŝ)) should be determined.

This new status is being considered next.

3. Projective Equivalence of Homogeneous Binary Polynomials

The aim of this section is to give a number of results for the EP - equivalence defined

on the set Rd(Θ). The origin of EP - equivalence stems back to the classical book by

Turnbull, see [10], for the algebraic theory of invariants. Initially, we will try to provide all

the necessary conditions and definitions in order to become clearer that the determination

of the compete set of invariants for EP-equivalence is the same with the determination of

the conditions under which two symmetric sets of points on C ∪ {∞} can be connected

under a projective transformation d ∈ PGL (1, C/R); see [3] and [7].

As we will see in the next sections, the latter problem can be expressed equivalently

by the study of invariants of matrices under the notion of extended Hermite equivalence

(EHE). Let us start with some interesting lemmas; some slightly modifications to proofs of

some known results have also been proposed.

Lemma 3. [9] Let

f(s, ŝ) = r1s
2 + p1sŝ + q1ŝ

2and f̃(λ, λ̂) = r2λ
2 + p2λλ̂ + q2λ

2
2 ∈ R2(Θ)

and

∆1 = p2
1 − 4r1q1and ∆2 = p2

2 − 4r2q2

be their corresponding determinants, respectively.

If f(s, ŝ)EP f̃(λ, λ̂), i.e., d ◦ f(s, ŝ) = c · f̃ (λ, λ̂), then

∆2 =
(αδ − βγ)2

c2
∆1. (6)

Proof. We can write the polynomial

f(s, ŝ) = [s, ŝ] ·

[
r1 p1/2

p1/2 q1

]
·

[
s
ŝ

]
= st · D1 · s,

where

s =

[
s
ŝ

]
and D1 =

[
r1 p1/2

p1/2 q1

]
.

Similarly, we have

f̃ λ, λ̂) = [λ, λ̂] ·

[
r2 p2/2

p2/2 q2

]
·

[
λ

λ̂

]
= λt ·D2 · λ,
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where

λ =

[
λ

λ̂

]
and D2 =

[
r2 p2/2

p2/2 q2

]
.

Obviously, we take

det D1 = −
1

4
∆1and det D2 = −

1

4
∆2.

The transformation d ∈ PGL (1, C/R) gives

[
s
ŝ

]
=

[
α β
γ δ

]
·

[
λ

λ̂

]
⇔

[
s
ŝ

]
= [d] ·

[
λ

λ̂

]
⇔ s = [d] · λ,

and

|[d]| = αδ − βγ 6= 0.

Then, we derive

d ◦ f(s, ŝ) = ([d] · λ)tD1 ([d] · λ) = λt[d]tD1 [d]λ.

Moreover, we take

cf̃(λ, λ̂) = c · λt · D2 · λ.

Since, the following equality holds

d ◦ f(s, ŝ) = cf̃(λ, λ̂) ⇔ λt[d]t · D1 · [d] · λ = λt · c ·D2 · λ ∀ λ ∈ Θ.

Thus,

[d]t · D1[d] = c · D2 ⇒ det
(
[d]t · D1 · [d]

)
= det(c · D2) ⇔

det [d]t · det D1 · det[d] = c2 · det D2 ⇔ (αδ − βγ)2 ·

(
−

1

4

)
· ∆1 =

c2

(
−

1

4

)
∆2 ⇔ (αδ − βγ)2 · ∆1 = c2 ·∆2 ⇔ ∆2 =

(αδ − βγ)2

c2
∆1.

Remark 1. The condition (6) implies that the determinant ∆1 is an invariant of the poly-

nomial f(s, ŝ) = rs2 + psŝ + qŝ2 of weight 2 under the EP-equivalence, see also [10].

Furthermore, the equality sign {∆1} = sign {∆2} and the reducibility property over R of

f(s, ŝ) ∈ R2 {Θ} are invariant under EP-equivalence.

A straightforward consequence of Lemma 4 and Remark 1 is the following proposition.

Its proof follows immediately by the way the projective transformation d ∈ PGL (1, C/R)
is applied on the unique factorization of f(s, ŝ).

Proposition 4. [3] Let pi(s, ŝ) = (γis − δiŝ) with γi, δi ∈ C and (γi, δi) 6= (0, 0) be the

primes over C of f(s, ŝ) ∈ Rd(θ), i.e.,

f(s, ŝ) =

d∏

i=1

pi(s, ŝ).
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If we take

f̃ (λ, λ̂) ∈ Rd(Θ) and f(s, ŝ)EP f̃(λ, λ̂),

for a d ∈ PGL (1, C/R), then

(i) any pair pi(s, ŝ), pj(s, ŝ) (with (γi, δi) 6= ζ(γj, δj) ∀ζ ∈ C\ {0} of is being

mapped under d to a pair of complex conjugate primes of f̃(λ, λ̂) and vice versa.

(ii) any pair of complex conjugate primes of f(s, ŝ), i.e.,

p(s, ŝ) = (γs− δŝ) and p(s, ŝ) = (γs − δŝ),

is being mapped under d to a pair of complex conjugate primes of f̃(λ, λ̂) and vice versa.

(iii) any pair p(s, ŝ), p(s, ŝ) of repeated primes (γi, δi) 6= ζ(γ ′
j, δ

′
j), ζ ∈ C\ {0} of

f(s, ŝ) is being mapped under d to a pair of complex conjugate primes of f̃(λ, λ̂) and

vice versa.

Now, consider a polynomial f(s, ŝ) ∈ Rd(Θ) and we denote with

DR(f) = {(αis − βiŝ)
τiαi, βi ∈ R, (αi, βi) 6= (0, 0) and i = 1, 2, . . . , µ} , (7)

and

DC(f) =
{
(γis− δiŝ)

pi , (γ̄is − δ̄iŝ)
pi , γi, δi ∈ C, (γi, δi) 6= (0, 0), i = 1, 2, . . . , ν

}
, (8)

the set of real and complex e.d. of f(s, ŝ) over C, respectively. Note that DC(f) is

symmetric, i.e., if (γis − δiŝ)
pi ∈ DC(f) ⇔ (γ̄is − δ̄iŝ)

pi ∈ DC(f). Moreover, it is true

that

µ∑

i=1

τi + 2

ν∑

i=1

pi = d. (9)

Reminding Proposition 4, the EP -equivalence can be expressed by defining the sets (7)

and (8), see Proposition 5. The proof is a very straightforward result, so it is omitted.

Proposition 5. Let f(s, ŝ), f̃(λ, λ̂) ∈ Rd(Θ) and

(DR(f), DC(f)) ,
(
DR(f̃), DC(f̃)

)

be the unique factorization sets, then f(s, ŝ)EP f̃(λ, λ̂) if and only if there exists

d ∈ PGL (1, C/R) such that the following conditions hold

(i) For every ei(s, ŝ) ∈ DR(f), there exists a ẽi(λ, λ̂) ∈ DR(f̃) such that

ei(s, ŝ)EP ẽi(λ, λ̂),

or equivalently d ◦ ei(s, ŝ) = ci · ẽi(λ, λ̂), ci ∈ R\{0} and vice versa.
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(ii) For every ei(s, ŝ) ∈ DC(f), there exists a ẽ′i(λ, λ̂) ∈ DC(f̃) such that

e′i(s, ŝ)EP ẽ′i(λ, λ̂),

or equivalently d ◦ e′i(s, ŝ) = ci · ẽ
′
i(λ, λ̂), ci ∈ C\{0} and vice versa.

Proposition 5 expresses the covariance property of the sets (7) and (8) of f(s, ŝ) under

the EP -equivalence. With the above result, it becomes clear that the study of the invariants

of EP (f) is equivalent with the study of properties of the elementary divisor sets under a

d ∈ PGL (1, C/R) transformation.

Before, we go any further, it is important to underline that the real e.d. (αs − βŝ)τ can

be represented by an ordered triple (α, β; τ) where α, β ∈ R and τZ. Similarly, the pair

of complex conjugate e.d. (γs− δŝ)p, (γs − δŝ)p can be also represented by an ordered

triple (γ, δ; p) where γ, δ ∈ C and p ∈ Z. Using now the two representations, we define the

following sets.

Definition 3. (i) We define the set

Bi
′ ,

{
(γi

j, δi
j ; pi) with γi

j, δi
j ∈ C, pi ∈ Z, j = 1, 2, . . . , νi

and

(γi
j, δi

j) 6= ξ(γi
k, δi

k) ∀ j 6= k, ξ ∈ C\{0}
}

,

as the set of all ordered triples corresponding the elements

(γi
js − δi

j ŝ)
pi , (γ̄i

js − δ̄i
j ŝ)

pi ,

in DC(f) with the same degree pi.

An ordering of the set Bi
′ is defined by any permutation of its elements which is

defined by π (Bi
′). The set of all such permutations is denoted by < Bi

′ >.

(ii) We define

BC(f) , {B1
′, B2

′, . . . , Bσ
′ : p1 < p2 < . . . < pσ},

which corresponds to the set of all pair of complex conjugate e.d. and it is referred as the

unique complex factorization set (C-UFS) of f(s, ŝ).

The set JC(f) , (p1, ν1), (p2, ν2), (pσ, νσ), where νi is the number of elements for

Bi
′, is known as the complex list of polynomials. Every permutation of BC(f), i.e.,

π (BC(f)) =
{
π(B′

1), . . . , π(Bσ
′) : π(Bi

′) ∈< Bi
′ >

}
,

defines a normal ordering of BC(f). Note that the set of all such permutations is denoted

by < BC(f) >.

(iii) Let π (BC(f)), where

π(Bi
′) =

{(
γi

1, δi
1; pi

)
, . . . ,

(
γi

νi
, δi

νi
; pi

)}
∈< Bi

′ > .
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A matrix representation of π (BC(f)) is given by

[Bπ
C(f)] =




[
B

′π
1

]
[
B

′π
2

]

...[
B

′π
σ

]




, where
[
B

′π
i

]
=




γi
1 δi

1

γi
2 δi

2
...

...

γi
νi

δi
νi


 ∈ C

νi×2. (10)

The matrix (10) is referred as a (C − π) basis matrix of f(s, ŝ).

(iv) For the set DR (f), we define in a similar manner the sets

Bj ,
{
(αi

j, βi
j; τi) : αi

j , βi
j ∈ R, τi ∈ Z and j = 1, 2, . . . , µj

with (αi
j, βi

j) 6= ζ(αi
k, βi

k), ∀ j 6= k with ζ ∈ R\{0}} ,

BR (f) ,= {B1, B2, . . . , Bρ; τ1 < τ2 . . . < τρ}

and

JR (f) , {(τ1, µ1), (τ2, µ2), . . . , (τρ, µρ)},

as well as the notions of normal ordering and of the matrix representation. The sets BR (f),

and JR (f) are referred as the unique real factorization set (C-UFS) and the real list of

f(s, ŝ), respectively. The matrix [Bπ
R
(f)] is defined similarly as in (10) and it is referred

as a (R − π) basis matrix of f(s, ŝ).

(v) Now, the sets B (f) , {BR (f) ,BC (f)} and J (f) = {JR (f) ,JC (f)} are called

the unique factorization set (UFS) and the list of f(s, ŝ), respectively.

For every π ∈< BR (f) > and π′ ∈< BC (f) >, a matrix representation of B (f) for

the pair (π, π′) is defined by

[
Bπ, π′

(f)
]

=

[
[Bπ

R
(f)][

Bπ′

C
(f)

]
]

.

The matrix
[
Bπ, π′

(f)
]

is referred as a (π, π′) basis matrix of

Remark 2. Following the above definitions, it is clear that since

#B′
i = viand #Bi = µi, then # < B′

i >= vi!, # < Bi >= µi!,

we obtain

# < BC (f) >= v1!v2! · · ·vσ !, # < BR (f) >= µ1!µ2! · · ·µρ!,

and

# < B (f) >= v1!v2! · · ·vσ !µ1!µ2! · · ·µρ!.
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With the following numerical example, the matrix representation of B (f) for a pair of

(π, π′), where π ∈< BR (f) > and π′ ∈< BC (f) > for a particular f(s, ŝ), is calculated

analytically.

Example 2. Assume that we have the following homogeneous polynomial

f(s, ŝ) =

(s − 2ŝ)(s + 3ŝ)2(s − ŝ)2(s + jŝ)(s− jŝ) (s + (2 + j)ŝ) (s + (2 − j)ŝ) (js + ŝ)2·

·(−js + ŝ)2((1 + j)s − 2ŝ)2((1 − j)s − 2ŝ)2(3ŝ + (1 + j)ŝ)2(3ŝ + (1− j)ŝ)2(s + ŝ)2,

where j2 = −1. Then, the following sets derive

B1
′ = {(1, j; 1)(1, −2 + j; 1},

B2
′ = {(j, −1; 2)(1 + j, 2; 2)(3, −1 + j; 2)},

B1 = (1, 2; 1),

B2 = (1, 3; 2)(1, 1; 2)(1, 1; 2).

Then, the set

BC(f) = {B1, B2}, and JC(f) = {(1, 2) , (2, 3)}.

Moreover,

BR(f) = {B1, B2}, and JR(f) = {(1, 1) , (2, 3)}.

So, we can have a permutation π′ such that

[
B

′π′

1

]
=

[
1 j
1 −2 + j

]
∈ C

2×2,
[
B

′π′

2

]
=




j −1

1 + j 2
3 −1 + j


 ∈ C

3×2.

And a permutation π such that

[Bπ
1 ] =

[
1 2

]
and [Bπ

2 ] =




1 −3

1 1
1 −1


 .

Then, the set

[
Bπ′

C (f)
]

=




[
B

′π′

1

]
[
B

′π′

2

]

 =




1 j
1 −2 + j

j 1

1 + j 2
3 −1 + j




,

and

[Bπ
R(f)] =




1 2

1 −3
1 1

1 −1


 .
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Finally, we obtain the matrix representation,

[
Bπ, π′

(f)
]

=

[
[Bπ

R
(f)][

Bπ′

C
(f)

]
]

=




1 2

1 −3
1 1
1 −1

1 j
1 −2 + j

j 1

1 + j 2
3 −1 + j




.

Now, having in our mind the proposed notations and definitions, the main result of this

section is presented. The proof of Theorem 3 derives straightforwardly by Propositions 4

and 5, and the fact that the pair (γ, δ) (see Proposition 4) which characterizes an elementary

divisor is different from any other pair of the same homogeneous polynomial.

Theorem 3. Let f(s, ŝ), f̃(λ, λ̂) ∈ Rd(Θ). Now, let

{BR(f), JR(f), BC(f), JC(f)} and {BR(f̃), JR(f̃), BC(f̃), JC(f̃)},

be the corresponding sets associated with f(s, ŝ) and f̃(λ, λ̂), respectively.

Then f(s, ŝ)EPf(λ, λ̂) if and only if the following conditions hold

(i) JR(f) = JR(f̃) and JC(f) = JC(f̃).

(ii) There exist the permutations

π (BR(f)) ∈< BR(f) >, π̃
(
BR(f̃)

)
∈< BR(f̃) >,

and

π′ (BC(f)) ∈< BC(f) >, π̃′

(
BC(f̃)

)
∈< BC(f̃) >,

the transformation d ∈ PGL (1, C/R) and ζi ∈ R\ {0}, ξi ∈ C\ {0} such that

[
Beπ

R(f̃)
]

= diag(ζi) [Bπ
R(f)] [d], (11)

[
Beπ′

C (f̃)
]

= diag(ξi)
[
Bπ′

C (f)
]
[d]. (12)

Another straightforward result is described in the next Corollary. The proof is omitted.

Corollary 1. The real and the complex list JR(f), JC(f) of f(s, ŝ) are invariants over

the EP (f)-equivalence class.

Now, let us take two pairs of sets

BR(f) = {BR(f),BC(f)}, and B(f̃) = {BR(f̃), BC(f̃)}
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for which

JR(f) = JR(f̃) and JC(f) = JC(f̃),

and the conditions (ii) of Theorem 3 hold for a transformation d ∈ PGL (1, C/R) and

nonzero constants ζi, ξi, then the B(f)EP̄B(f̃ ) is called normally projective equivalence

(NPE).

Profoundly, the notion of NPE on the set B (f) is equivalent to the EP -equivalence no-

tion defined on Rd {Θ}. In other words, EP̄ -equivalence is nothing else but EP-equivalence

defined on the UFS of the polynomials in Rd {Θ}. The reason why we want to use this

equivalence has to do with the fact that the NPE reduces the study of invariants of EP (f)

into a standard matrix algebra problem, which has to do only with the calculation of expres-

sions (11) and (12).

Remark 3. It is worth to point out that the study of EP -equivalence, as it has been expressed

by the significant Theorem 3, is equivalent to a classical algebraic projective geometric

problem, i.e., given two symmetric sets of points ζ, ζ̃ of C ∪ {∞}, find the necessary and

sufficient conditions for the existence of the projective transformation d ∈ PGL (1, C/R) :

ζ
d
−→ ζ̃.

In this part of the section, in order to be able to calculate analytically the complete set

of invariants for EP (f), we should remind the extended Hermite equivalence of matrices,

which is a straightforward result of EP̄ -equivalence.

Let T ∈ C
k×2. The matrix T is called entirely nonsingular if none of its 2×2 minors is

zero. The set of the entirely non-singular matrices of k × 2 dimension is denoted by Ck×2
n .

The subset of Ck×2
n , which is constructed by real T matrices is denoted by Rk×2

n . Clearly,

the matrices
[
Bπ′

C
(f)

]
, [Bπ

R
(f)] are entirely nonsingular complex and real matrices, re-

spectively.

Definition 4. Let T1, T2 ∈ C
k×2

(
or R

k×2
)
. T1 and T2 will be complex (or real) extended

Hermite equivalent, and they will be denoted by T1EC
ehT2

(
or T1ER

ehT2

)
if and only if there

exist ξi ∈ C\ {0}, i = 1, 2, ..., k and a matrix Q ∈ C
2×2 with det (Q) ∈ R\ {0} such that

T2 = diag {ξi} T1Q. (13)

Remark 4. In the case of EC

eh-equivalence, we can always assume that

det(Q) = 1.

However, in the case of ER
eh-equivalence, we can always assume that

det(Q) = 1 or 1.

This is due to the fact that if det(Q) 6= ±1, then |det (Q)| can be absorbed by the ξi

parameters, see next Lemma.

Clearly, the study of EP̄ -equivalence of the set B (f) is reduced to the study of ER
eh

equivalence over
[
Bπ, π′

(f)
]
.
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Lemma 4. [1] Let T1, T2 ∈ C
k×2 and T1E

R

ehT2, then

T2 = diag(ξi)T1Q with det(Q) = 1 or − 1 (14)

and Q ∈ R2×2.

According to Lemma 4, the definition of the real extended Hermite equivalence can be

slightly reformulated.

Definition 5. Two matrices T1, T2 ∈ Ck×2 are called real extended Hermite equivalent,

i.e., T1E
R
ehT2 if and only if there exist ξi ∈ C\ {0}, i = 1, 2, ..., k and a matrix Q ∈ R

2×2

with det (Q) = ±1 such that (13) is valid.

Now ending this section, we would like to remind that two matrix pencils,

L1(s, ŝ) = sF1 − ŝG1 and L2(λ, λ̂) = λF2 − λ̂G2,

are SBE if and only if we have

Ic (F1, G1) = Ic (F2, G2) , Ir (F1, G1) = Ir (F2, G2) ,

JR(f) = JR(f̃), JC(f) = JC(f̃),

and the permutations π, π′, π̃, π̃′ such that
[
Beπ,eπ′

(f̃)
]
ER

eh

[
Bπ,π′

(f)
]

for every homoge-

neous polynomials f, f̃ of L1(s, ŝ), L2(λ, λ̂), respectively.

Following now the above discussion,
[
Beπ,eπ′

(f̃)
]
ER

eh

[
Bπ,π′

(f)
]

for every homoge-

neous polynomials f, f̃ if and only if there exist ξi ∈ C\ {0}, i = 1, 2, ..., k and a matrix

Q ∈ R
2×2 with det (Q) = ±1 such that

[
Beπ, eπ′

(f̃)
]

= diag(ξi)
[
Bπ, π′

(f)
]
Q (15)

for every f, f̃ and the same Q ∈ R
2×2.

In the next section, we will determine analytically the matrix Q ∈ R
2×2 and ξi when

the matrix
[
Bπ,π′

(f)
]

exists for a homogeneous polynomial of L1(s, ŝ), with dimension

k × 2 and k ≥ 3, i.e., with rectangular coefficients. Note that the matrix Q is the projective

transformation d ∈ PGL (1, C/R).

4. d ∈ PGL (1, C/R) When Two Pencils are SBE

In order to calculate the matrix Q, the first step is to provide the following significant

Theorem 4 which has been proven in [1].

Theorem 4. [1] Let T1, T2 ∈ C
k×2
n with k ≥ 3 and

T2 = diag(ξi)T1Q1 and T2 = diag(ζi)T1Q2,
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where ξi, ζi ∈ C\ {0}, i = 1, 2, ..., k and matrices Q1, Q2 ∈ R
2×2 with

det (Q1) , det (Q2) = ±1. Then,

a) ζi = −ξi for every i = 1, 2, ..., k, and Q2 = −Q1.

b) ζi = ξi for every i = 1, 2, ..., k, and Q2 = Q1.

Based on the above Theorem, the following corollary is derived, the proof also is given

in [1].

Corollary 2. [1] Let T1, T2 ∈ Ck×2
n with k ≥ 3. If T1ER

ehT2, then there exist unique ξi,

i = 1, 2, . . .k such as ξi ∈ C\ {0} and a unique Q ∈ R
2×2 with det(Q) = 1 or 1, then

T2 = diagξiT1Q.

Remark 5. Assume that

L1(s, ŝ) = sF1 − ŝG1 and L2(λ, λ̂) = λF2 − λ̂G2,

which are BSE, L1(s, ŝ)EH−BL2(λ, λ̂).

Now, let F (F1, G1) = {f1(s, ŝ), . . . , fp−k1
(s, ŝ)} and F (F2, G2) ={

f̃1(λ, λ̂), . . . , f̃p−k1
(λ, λ̂)

}
, be the set of homogeneous invariant polynomials of

L1(s, ŝ) and L2(λ, λ̂), respectively. Assume that there exists a polynomial fj(s, ŝ)

for the pencil L1(s, ŝ) and the permutations π, π′ such that (π−π′) be a k×2 base matrix

of fj(s, ŝ) with k ≥ 3 for j = 1, 2, . . . , p− k1. Then, since L1(s, ŝ)EH−BL2(λ, λ̂), there

exist permutations π̃, π̃′:

[
Bπ, π′

(fj)
]
Er

eh

[
Beπ, eπ′

(f̃j)
]

⇔
[
Beπ, eπ′

(f̃j)
]

= diag{ξi}
[
Bπ, π′

(fj)
]
Q.

Note that the matrix Q ∈ R2×2 with det(Q) = 1 or −1 and the ξi, i = 1, 2, . . . , k are

unique (see Corollary 2). Also the matrix Q creates the projective transformation d ∈
PGL (1, C/R).

With the next significant Proposition, we provide the analytical formulas for the unique

determination of ξi and Q. Let T ∈ Ck×2
n , then we denote with aij the determinant of the

sub-matrix of T which is constructed by the ith and jth row

i < j, i = 1, 2, . . . , k − 1and j = 2, 3, . . . , k.

Proposition 6. [1] Let T1, T2 ∈ Ck×2
n with k ≥ 3.

If T1ER
ehT2 and det(Q) = ±1, and ξi the parameters of the real extended Hermite

equivalence, then

(a)

ξ2
1 =

1

det (Q)

α
(2)
1, i1

α
(1)
1, i1

·
α

(2)
1, i2

α
(1)
1, i2

·
α

(1)
i, i2

α
(2)
i, i2

(16)
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for every i1, i2 with 1 < i1 < i2 and i1 = 2, 3, . . . , (k − 1), i2 = 3, 4, 5, . . . , k.

(b)

ξi =
α

(2)
1, i

α
(1)
1, i

·
1

det (Q) ξ1
(17)

for every i = 2, . . . , k and α
(1)
i1, i2

which is the determinant of the sub-matrix of T1 which is

defined by the ith1 and ith2 row, and α
(2)
i1, i2

respectively the determinant of the matrix T2 with

i1 < i2.

So far, we have determined analytically the extended Hermite equivalence in R for

two matrices. The parameters ξi are calculated from equation (16); see also Proposition 6.

The last part of this section deals with the calculation of matrix Q, such as the projective

transformation d ∈ PGL (1, C/R) is fully determined. Since,

[
Bπ, π′

(fj)
]
Er

eh

[
Beπ, eπ′

(fj)
]

⇔
[
Beπ, eπ′

(f̃j)
]

= diag(ξi)
[
Bπ, π′

(fj)
]
·Q,

for j = 1, 2, . . . , (p− k1), where the base matrices have dimension k × 2 with k ≥ 3.

Now, if we choose the first two rows of
[
Beπ, eπ′

(f̃j)
]

and
[
Bπ, π′

(fj)
]
, then (18) holds

Π12(f̃j) =

[
ξ1 0
0 ξ2

]
· Π12(fj) ·Q, (18)

where Π12(f̃j), Π12(fj) are sub-matrices of
[
Beπ, eπ′

(f̃j)
]

and
[
Bπ, π′

(fj)
]
, respectively.

Note that Π12(f̃j), Π12(fj) are non-singular 2 × 2 matrices, and

[
ξ1 0

0 ξ2

]
with

[
ξ1 0

0 ξ2

]−1

=

[
1
ξ1

0

0 1
ξ2

]
.

Finally, the matrix Q is determined by (19)

Q = Π−1
12 (fj)

[
1
ξ1

0

0 1
ξ2

]
Π12

(
f̃j

)
. (19)
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Abstract

By a generalized inverse of a given matrix, we mean a matrix that exists for a larger

class of matrices than the nonsingular matrices, that has some of the properties of the

usual inverse, and that agrees with inverse when given matrix happens to be nonsin-

gular. In theory, there are many different generalized inverses that exist. We shall

consider the Moore Penrose, weighted Moore-Penrose, Drazin and weighted Drazin

inverses.

New determinantal representations of these generalized inverse based on their limit

representations are introduced in this chapter. Application of this new method allows

us to obtain analogues classical adjoint matrix. Using the obtained analogues of the

adjoint matrix, we get Cramer’s rules for the least squares solution with the minimum

norm and for the Drazin inverse solution of singular linear systems. Cramer’s rules

for the minimum norm least squares solutions and the Drazin inverse solutions of the

matrix equations AX = D, XB = D and AXB = D are also obtained, where

A, B can be singular matrices of appropriate size. Finally, we derive determinantal

representations of solutions of the differential matrix equations, X′ + AX = B and

X
′ + XA = B, where the matrix A is singular.

Keywords: generalized inverse; Drazin inverse; weighted Drazin inverse; Moore-Penrose

inverse; weighted Moore-Penrose inverse; system of linear equations; Cramer’s Rule; ma-

trix equation; generalized inverse solution; least squares solution; Drazin inverse solution;

differential matrix equation
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1. Preface

It’s well-known in linear algebra, an n-by-n square matrix A is called invertible (also

nonsingular or nondegenerate) if there exists an n-by-n square matrix X such that

AX = XA = In.

If this is the case, then the matrix X is uniquely determined by A and is called the inverse

of A, denoted by A−1.

By a generalized inverse of a given matrix, we mean a matrix that exists for a larger

class of matrices than the nonsingular matrices, that has some of the properties of the usual

inverse, and that agrees with inverse when given matrix happens to be nonsingular.

For any matrix A ∈ Cm×n consider the following equations in X:

AXA = A; (1.1)

XAX = X; (1.2)

(AX)∗ = AX; (1.3)

(XA)∗ = XA. (1.4)

and if m = n, also

AX = AX; (1.5)

Ak+1X = Ak. (1.6)

For a sequence G of {1, 2, 3, 4, 5} the set of matrices obeying the equations represented in

G is denoted by A{G}. A matrix from A{G} is called an G-inverse of A and denoted by

A(G).

Consider some principal cases.

If X satisfies all the equations (1.1)-(1.4) is said to be the Moore-Penrose inverse of

A and denote A+ = A(1,2,3,4). The MoorePenrose inverse was independently described

by E. H. Moore [1] in 1920, Arne Bjerhammar [2] in 1951 and Roger Penrose [3] in 1955.

R. Penrose introduced the characteristic equations (1.1)-(1.4).

If det A 6= 0, then A+ = A−1.

The group inverse Ag is the unique A(1,2,5) inverse of A, and exists if and only if

Ind A = min{k : rankAk+1 = rankAk} = 1.

A matrix X = AD is said to be the Drazin inverse of A if (1.6) (for some positive

integer k), (1.2) and (1.5) are satisfied, where k = Ind A. It is named after Michael

P. Drazin [4]. In particular, when IndA = 1, then the matrix X is the group inverse,

X = Ag. If IndA = 0, then A is nonsingular, and AD ≡ A−1.

Let Hermitian positive definite matrices M and N of order m and n, respectively, be

given. For any matrix A ∈ C
m×n, the weighted Moore-Penrose inverse of A is the unique

solution X = A+
M,N of the matrix equations (1.1) and (1.2) and the following equations in

X [5]:

(3M) (MAX)∗ = MAX; (4N ) (NXA)∗ = NXA.

In particular, when M = Im and N = In, the matrix X satisfying the equations (1.1), (1.2),

(3M), (4N) is the Moore-Penrose inverse A+.
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The weighted Drazin inverse is being considered as well.

To determine the inverse and to give its analytic solution, we calculate a matrix of co-

factors, known as an adjugate matrix or a classical adjoint matrix. The classical adjoint of

A, denote Adj[A], is the transpose of the cofactor matrix, then A−1 = Adj[A]
|A| . Representa-

tion an inverse matrix by its classical adjoint matrix also plays a key role for Cramer’s rule

of systems of linear equations or matrices equations.

Obviously, the important question is the following: what are the analogues for the ad-

joint matrix of generalized inverses and, consequently, for Cramer’s rule of generalized

inverse solutions of matrix equations?

This is the main goal of the chapter.

In this chapter we shall adopt the following notation. Let Cm×n be the set of m by n

matrices with complex entries, C
m×n
r be a subset of C

m×n in which any matrix has rank r,

Im be the identity matrix of order m, and ‖.‖ be the Frobenius norm of a matrix.

Denote by a.j and ai. the jth column and the ith row of A ∈ C
m×n, respectively. Then

a∗.j and a∗i. denote the jth column and the ith row of a conjugate and transpose matrix A∗ as

well. Let A.j (b) denote the matrix obtained from A by replacing its jth column with the

vector b, and by Ai. (b) denote the matrix obtained from A by replacing its ith row with

b.

Let α := {α1, . . . , αk} ⊆ {1, . . . , m} and β := {β1, . . . , βk} ⊆ {1, . . . , n} be subsets

of the order 1 ≤ k ≤ min{m, n}. Then

∣∣∣Aα
β

∣∣∣ denotes the minor of A determined by the

rows indexed by α and the columns indexed by β. Clearly, |Aα
α| denotes a principal minor

determined by the rows and columns indexed by α. The cofactor of aij in A ∈ C
n×n is

denoted by ∂
∂aij

|A|.

For 1 ≤ k ≤ n, Lk,n := {α : α = (α1, . . . , αk) , 1 ≤ α1 ≤ . . . ≤ αk ≤ n} denotes

the collection of strictly increasing sequences of k integers chosen from {1, . . . , n}. Let

Nk := Lk,m × Lk,n. For fixed α ∈ Lp,m, β ∈ Lp,n, 1 ≤ p ≤ k, let

Ik, m (α) := {I : I ∈ Lk,m, I ⊇ α},
Jk, n (β) := {J : J ∈ Lk, n, J ⊇ β},

Nk (α, β) := Ik, m (α) × Jk, n (β)

For case i ∈ α and j ∈ β, we denote

Ik,m{i} := {α : α ∈ Lk,m, i ∈ α}, Jk,n{j} := {β : β ∈ Lk,n, j ∈ β},
Nk{i, j} := Ik, m{i} × Jk, n{j}.

The chapter is organized as follows. In Section 2 determinantal representations by ana-

logues of the classical adjoint matrix for the Moore Penrose, weighted Moore-Penrose,

Drazin and weighted Drazin inverses are obtained.

In Section 3 we show that the obtained analogues of the adjoint matrix for the general-

ized inverse matrices enable us to obtain natural analogues of Cramer’s rule for generalized

inverse solutions of systems of linear equations and demonstrate it in two examples.

In Section 4, we obtain analogs of the Cramer rule for generalized inverse solutions of

the matrix equations, AX = B, XA = B and AXB = D, namely for the minimum norm

least squares solutions and the Drazin inverse solutions. We show numerical examples to

illustrate the main results as well.
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In Section 5, we use the determinantal representations of the Drazin inverse solution to

solutions of the following differential matrix equations, X′+AX = B and X′+XA = B,

where A is singular. It is demonstrated in the example.

Facts set forth in Sections 2 and 3 were partly published in [6], in Section 4 were

published in [7, 8] and in Sections 5 were published in [8].

Note that we obtained some of the submitted results for matrices over the quaternion

skew field within the framework of the theory of the column and row determinants [9, 10,

11, 12, 13, 14].

2. Analogues of the Classical Adjoint Matrix for Generalized

Inverse Matrices

For determinantal representations of the generalized inverse matrices as analogues of

the classical adjoint matrix, we apply the method, which consists on the limit representation

of the generalized inverse matrices, lemmas on rank of some matrices and on characteristic

polynomial. We used this method at first in [6] and then in [8]. Liu et al. in [15] deduce

the new determinantal representations of the outer inverse A
(2)
T,S based on these principles

as well. In this chapter we obtain detailed determinantal representations by analogues of

the classical adjoint matrix for the Moore Penrose, weighted Moore-Penrose, Drazin and

weighted Drazin inverses.

2.1. Analogues of the Classical Adjoint Matrix for the Moore - Penrose

Inverse

Determinantal representation of the Moore - Penrose inverse was studied in [1],[16, 17,

18, 19]. The main result consists in the following theorem.

Theorem 2.1. The Moore - Penrose inverse A+ = (a+
ij) ∈ C

n×m of A ∈ C
m×n
r has the

following determinantal representation

a+
ij =

∑
(α, β)∈Nr{j, i}

∣∣∣(A∗)βα

∣∣∣ ∂
∂aj i

∣∣∣Aα
β

∣∣∣

∑
(γ, δ)∈Nr

∣∣∣(A∗)δ
γ

∣∣∣
∣∣Aγ

δ

∣∣
, 1 ≤ i, j ≤ n.

This determinantal representation of the Moore - Penrose inverse is based on corre-

sponding full-rank representation [16]: if A = PQ, where P ∈ C
m×r
r and Q ∈ C

r×n
r ,

then

A+ = Q∗(P∗AQ∗)−1P∗.

For a better understanding of the structure of the Moore - Penrose inverse we consider

it by singular value decomposition of A. Let

AA∗ui = σ2
i ui, i = 1, m

A∗Avi = σ2
i vi, i = 1, n,

σ1 ≤ σ2 ≤ ...σr > 0 = σr+1 = σr+2 = ...
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and the singular value decomposition (SVD) of A is A = UΣV∗, where

U = [u1 u2...um] ∈ C
m×m, U∗U = Im,

V = [v1 v2...vn] ∈ Cn×n, V∗V = In,

Σ = diag(σ1, σ2, ..., σr) ∈ C
m×n.

Then [3], A+ = VΣ+U∗, where Σ+ = diag(σ−1
1 , σ−1

2 , ..., σ−1
r ).

We need the following limit representation of the Moore-Penrose inverse.

Lemma 2.2. [20] If A ∈ C
m×n, then

A+ = lim
λ→0

A∗ (AA∗ + λI)−1 = lim
λ→0

(A∗A + λI)−1
A∗,

where λ ∈ R+, and R+ is the set of positive real numbers.

Corollary 2.3. [21] If A ∈ C
m×n, then the following statements are true.

i) If rankA = n, then A+ = (A∗A)−1
A∗ .

ii) If rankA = m, then A+ = A∗ (AA∗)−1
.

iii) If rankA = n = m, then A+ = A−1 .

We need the following well-known theorem about the characteristic polynomial and

lemmas on rank of some matrices.

Theorem 2.4. [22] Let dr be the sum of principal minors of order r of A ∈ Cn×n. Then

its characteristic polynomial pA (t) can be expressed as pA (t) = det (tI −A) = tn −
d1t

n−1 + d2t
n−2 − . . . + (−1)n

dn.

Lemma 2.5. If A ∈ Cm×n
r , then rank (A∗A). i

(
a∗.j

)
≤ r.

Proof. Let Pi k (−aj k) ∈ C
n×n, (k 6= i), be the matrix with −aj k in the (i, k) entry, 1

in all diagonal entries, and 0 in others. It is the matrix of an elementary transformation. It

follows that

(A∗A). i

(
a∗. j
)
·
∏

k 6=i

Pi k (−aj k) =




∑
k 6=j

a∗1kak1 . . . a∗1j . . .
∑
k 6=j

a∗1kakn

. . . . . . . . . . . . . . .∑
k 6=j

a∗nkak1 . . . a∗nj . . .
∑
k 6=j

a∗nkakn




i−th

.

The obtained above matrix has the following factorization.




∑
k 6=j

a∗1kak1 . . . a∗1j . . .
∑
k 6=j

a∗1kakn

. . . . . . . . . . . . . . .∑
k 6=j

a∗nkak1 . . . a∗nj . . .
∑
k 6=j

a∗nkakn




i−th

=
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=




a∗11 a∗12 . . . a∗1m

a∗21 a∗22 . . . a∗2m

. . . . . . . . . . . .

a∗n1 a∗n2 . . . a∗nm







a11 . . . 0 . . . an1

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0
. . . . . . . . . . . . . . .

am1 . . . 0 . . . amn




i−th

j − th.

Denote by Ã :=




a11 . . . 0 . . . a1n

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

am1 . . . 0 . . . amn




i−th

j − th. The matrix Ã is obtained from

A by replacing all entries of the jth row and of the ith column with zeroes except that the

(j, i) entry equals 1. Elementary transformations of a matrix do not change its rank. It

follows that rank (A∗A). i

(
a∗.j

)
≤ min

{
rankA∗, rank Ã

}
. Since rank Ã ≥ rank A =

rankA∗ and rankA∗A = rankA the proof is completed. The following lemma can be

proved in the same way.

Lemma 2.6. If A ∈ Cm×n
r , then rank (AA∗)i .

(
a∗j .

)
≤ r.

Analogues of the characteristic polynomial are considered in the following two lemmas.

Lemma 2.7. If A ∈ C
m×n and λ ∈ R, then

det
(
(λIn + A∗A). i

(
a∗.j
))

= c
(ij)
1 λn−1 + c

(ij)
2 λn−2 + . . . + c(ij)

n , (2.1)

where c
(ij)
n =

∣∣∣(A∗A). i

(
a∗.j

)∣∣∣ and c
(ij)
s =

∑
β∈Js, n{i}

∣∣∣∣
(
(A∗A). i

(
a∗.j

))β

β

∣∣∣∣ for all s =

1, n− 1, i = 1, n, and j = 1, m.

Proof. Denote A∗A = V = (vij) ∈ C
n×n . Consider (λIn + V). i (v.i) ∈ C

n×n. Taking

into account Theorem 2.4 we obtain

|(λIn + V). i (v.i)| = d1λ
n−1 + d2λ

n−2 + . . . + dn, (2.2)

where ds =
∑

β∈Js, n{i}

|(V)β
β| is the sum of all principal minors of order s that contain the

i-th column for all s = 1, n− 1 and dn = det V. Since v. i =
∑
l

a∗. lali, where a∗. l is the

lth column-vector of A∗ for all l = 1, n, then we have on the one hand

|(λI + V). i (v. i)| =
∑
l

|(λI + V). l (a
∗
. lali)| =

∑
l

|(λI + V). i (a
∗
. l)| · ali

(2.3)

Having changed the order of summation, we obtain on the other hand for all s = 1, n− 1

ds =
∑

β∈Js,n{i}

∣∣∣(V)ββ

∣∣∣ =
∑

β∈Js, n{i}

∑
l

∣∣∣(V. i (a
∗
. lal i))

β
β

∣∣∣ =

∑
l

∑
β∈Js,n{i}

∣∣∣(V. i (a
∗
. l))

β
β

∣∣∣ · al i.
(2.4)
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By substituting (2.3) and (2.4) in (2.2), and equating factors at al i when l = j, we obtain

the equality (2.1).

By analogy can be proved the following lemma.

Lemma 2.8. If A ∈ C
m×n and λ ∈ R, then

det ((λIm + AA∗)j . (a
∗
i.)) = r

(ij)
1 λm−1 + r

(ij)
2 λm−2 + . . . + r(ij)

m ,

where r
(ij)
m = |(AA∗)j . (a

∗
i. )| and r

(ij)
s =

∑
α∈Is,m{j}

∣∣((AA∗)j . (a
∗
i. ))

α
α

∣∣ for all s =

1, n− 1, i = 1, n, and j = 1, m.

The following theorem and remarks introduce the determinantal representations of the

Moore-Penrose by analogs of the classical adjoint matrix.

Theorem 2.9. If A ∈ Cm×n
r and r < min{m, n}, then the Moore-Penrose inverse A+ =(

a+
ij

)
∈ Cn×m possess the following determinantal representations:

a+
ij =

∑
β∈Jr, n{i}

∣∣∣
(
(A∗A) . i

(
a∗.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
, (2.5)

or

a+
ij =

∑
α∈Ir,m{j}

|((AA∗)j . (a
∗
i. ))

α
α|

∑
α∈Ir, m

|(AA∗) α
α|

. (2.6)

for all i = 1, n, j = 1, m.

Proof. At first we shall obtain the representation (2.5). If λ ∈ R+, then the matrix

(λI + A∗A) ∈ Cn×n is Hermitian and rank (λI + A∗A) = n. Hence, there exists its

inverse

(λI + A∗A)−1 =
1

det (λI + A∗A)




L11 L21 . . . Ln 1

L12 L22 . . . Ln 2

. . . . . . . . . . . .

L1 n L2n . . . Ln n


 ,

where Lij (∀i, j = 1, n) is a cofactor in λI + A∗A. By Lemma 2.2, A+ =

lim
λ→0

(λI + A∗A)−1
A∗, so that

A+ = lim
λ→0




det(λI+A
∗
A).1(a∗

. 1)
det(λI+A∗A) . . .

det(λI+A
∗
A). 1(a

∗
. m)

det(λI+A∗A)

. . . . . . . . .
det(λI+A

∗
A). n(a∗

.1)
det(λI+A∗A) . . .

det(λI+A∗A). n(a∗
. m)

det(λI+A∗A)


 . (2.7)

From Theorem 2.4 we get

det (λI + A∗A) = λn + d1λ
n−1 + d2λ

n−2 + . . . + dn,

Complimentary Contributor Copy



86 Ivan I. Kyrchei

where dr (∀r = 1, n− 1) is a sum of principal minors of A∗A of order r and dn =
det A∗A. Since rankA∗A = rankA = r, then dn = dn−1 = . . . = dr+1 = 0 and

det (λI + A∗A) = λn + d1λ
n−1 + d2λ

n−2 + . . . + drλ
n−r. (2.8)

In the same way, we have for arbitrary 1 ≤ i ≤ n and 1 ≤ j ≤ m from Lemma 2.7

det (λI + A∗A). i
(
a∗.j
)

= l
(ij)
1 λn−1 + l

(ij)
2 λn−2 + . . . + l(ij)n ,

where for an arbitrary 1 ≤ k ≤ n − 1, l
(ij)
k =

∑
β∈Jk, n{i}

∣∣∣∣
(
(A∗A). i(a

∗
.j)
)β

β

∣∣∣∣, and l
(i j)
n =

det (A∗A). i

(
a∗. j

)
. By Lemma 2.5, rank (A∗A). i

(
a∗. j

)
≤ r so that if k > r, then

∣∣∣∣
(
(A∗A) . i(a

∗
.j)
)β

β

∣∣∣∣ = 0, (∀β ∈ Jk, n{i}, ∀i = 1, n, ∀j = 1, m). Therefore if r + 1 ≤ k <

n, then l
(ij)
k =

∑
β∈Jk, n{i}

∣∣∣∣
(
(A∗A) . i(a

∗
.j)
)β

β

∣∣∣∣ = 0 and l
(i j)
n = det (A∗A). i

(
a∗. j

)
= 0,

(
∀i = 1, n, ∀j = 1, m

)
. Finally we obtain

det (λI + A∗A). i
(
a∗. j

)
= l

(i j)
1 λn−1 + l

(i j)
2 λn−2 + . . . + l(ij)r λn−r . (2.9)

By replacing the denominators and the numerators of the fractions in entries of matrix

(2.7) with the expressions (2.8) and (2.9) respectively, we get

A+ = lim
λ→0




l
(11)
1 λn−1+...+l

(11)
r λn−r

λn+d1λn−1+...+drλn−r . . .
l
(1m)
1 λn−1+...+l

(1m)
r λn−r

λn+d1λn−1+...+drλn−r

. . . . . . . . .

l
(n1)
1 λn−1+...+l

(n1)
r λn−r

λn+d1λn−1+...+drλn−r . . .
l
(nm)
1 λn−1+...+l

(nm)
r λn−r

λn+d1λn−1+...+drλn−r


 =

=




l
(11)
r

dr
. . . l

(1m)
r

dr

. . . . . . . . .

l
(n1)
r

dr
. . . l

(nm)
r

dr


 .

From here it follows (2.5).

We can prove (2.6) in the same way.

Corollary 2.10. If A ∈ C
m×n
r and r < min {m, n} or r = m < n, then the projection

matrix P = A+A can be represented as

P =

(
pij

dr (A∗A)

)

n×n

,

where d. j denotes the jth column of (A∗A) and, for arbitrary 1 ≤ i, j ≤ n, pij =
∑

β∈Jr,n{i}

∣∣∣((A∗A) . i(d.j))
β
β

∣∣∣.
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Proof. Representing the Moore - Penrose inverse A+ by (2.5), we obtain

P =
1

dr (A∗A)




l11 l12 . . . l1m

l21 l22 . . . l2m

. . . . . . . . . . . .

ln1 ln2 . . . lnm







a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am 1 am 2 . . . am n


 .

Therefore, for arbitrary 1 ≤ i, j ≤ n we get

pi j =
∑
k

∑
β∈Jr, n{i}

∣∣∣((A∗A). i(a
∗
. k))

β
β

∣∣∣ · ak j =

=
∑

β∈Jr, n{i}

∑
k

∣∣∣((A∗A). i(a
∗
. k · ak j))

β
β

∣∣∣ =
∑

β∈Jr, n{i}

∣∣∣∣
(
(A∗A). i(d

∗
.j)
)β

β

∣∣∣∣.

Using the representation (2.6) of the Moore - Penrose inverse the following corollary can

be proved in the same way.

Corollary 2.11. If A ∈ Cm×n
r , where r < min{m, n} or r = n < m, then a projection

matrix Q = AA+ can be represented as

Q =

(
qij

dr (AA∗)

)

m×m

,

where gi. denotes the ith row of (AA∗) and, for arbitrary 1 ≤ i, j ≤ m, qi j =∑
α∈Ir,m{j}

∣∣((AA∗)j. (gi. ))
α
α

∣∣.

Remark 2.12. If rankA = n, then from Corollary 2.3 we get A+ = (A∗A)−1
A∗. Rep-

resenting (A∗A)−1 by the classical adjoint matrix, we have

A+ =
1

det(A∗A)




det(A∗A).1 (a∗.1) . . . det(A∗A).1 (a∗. m)
. . . . . . . . .

det(A∗A). n (a∗. 1) . . . det(A∗A). n (a∗. m)


 . (2.10)

If n < m, then (2.5) is valid.

Remark 2.13. As above, if rankA = m, then

A+ =
1

det(AA∗)




det(AA∗)1 . (a
∗
1 .) . . . det(AA∗)m . (a

∗
1 .)

. . . . . . . . .

det(AA∗)1 . (a
∗
n .) . . . det(AA∗)m . (a

∗
n .)


 . (2.11)

If n > m, then (2.6) is valid as well.

Remark 2.14. By definition of the classical adjoint Adj(A) for an arbitrary invertible

matrix A ∈ C
n×n one may put, Adj(A) ·A = det A · In.

If A ∈ C
m×n and rankA = n, then by Corollary 2.3, A+A = In. Representing the

matrix A+ by (2.10) as A+ = L

det(A∗A)
, we obtain LA = det (A∗A) · In. This means

that the matrix L = (lij) ∈ C
n×m is a left analogue of Adj(A) , where A ∈ C

m×n
n , and

lij = det(A∗A).i

(
a∗.j

)
for all i = 1, n, j = 1, m.
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If rankA = m, then by Corollary 2.3, AA+ = Im. Representing the matrix A+

by (2.11) as A+ = R

det(AA∗)
, we obtain AR = Im · det (AA∗). This means that the

matrix R = (rij) ∈ C
m×n is a right analogue of Adj(A), where A ∈ C

m×n
m , and rij =

det(AA∗)j . (a
∗
i .) for all i = 1, n, j = 1, m.

If A ∈ Cm×n
r and r < min{m, n}, then by (2.5) we have A+ = L

dr(A∗A)
, where L =

(lij) ∈ Cn×m and lij =
∑

β∈Jr, n{i}

∣∣∣
(
(A∗A) . i

(
a∗.j

))
β
β

∣∣∣ for all i = 1, n, j = 1, m. From

Corollary 2.10 we get LA = dr (A∗A) ·P. The matrix P is idempotent. All eigenvalues of

an idempotent matrix chose from 1 or 0 only. Thus, there exists an unitary matrix U such

that

LA = dr (A∗A)Udiag (1, . . . , 1, 0, . . . , 0)U∗,

where diag (1, . . . , 1, 0, . . . , 0) ∈ C
n×n is a diagonal matrix. Therefore, the matrix L can

be considered as a left analogue of Adj(A), where A ∈ Cm×n
r .

In the same way, if A ∈ C
m×n
r and r < min{m, n}, then by (2.5) we have A+ =

R

dr(AA∗) , where R = (rij) ∈ C
n×m, rij =

∑
α∈Ir,m{j}

|((AA∗)j . (a
∗
i. ))

α
α|for all i = 1, n,

j = 1, m. From Corollary 2.11 we get AR = dr (AA∗) · Q. The matrix Q is idempotent.

There exists an unitary matrix V such that

AR = dr (AA∗)Vdiag (1, . . . , 1, 0, . . . , 0)V∗,

where diag (1, . . . , 1, 0, . . . , 0) ∈ C
m×m. Therefore, the matrix R can be considered as a

right analogue of Adj(A) in this case.

Remark 2.15. To obtain an entry of A+ by Theorem 2.1 one calculates (Cr
nCr

m +
Cr−1

n−1C
r−1
m−1) determinants of order r. Whereas by the equation (2.5) we calculate as much

as (Cr
n + Cr−1

n−1) determinants of order r or we calculate the total of (Cr
m + Cr−1

m−1) deter-

minants by (2.6). Therefore the calculation of entries of A+ by Theorem 2.9 is easier than

by Theorem 2.1.

2.2. Analogues of the Classical Adjoint Matrix for the Weighted

Moore-Penrose Inverse

Let Hermitian positive definite matrices M and N of order m and n, respectively, be

given. The weighted Moore-Penrose inverse X = A+
M,N can be explicitly expressed from

the weighted singular value decomposition due to Van Loan [23].

Lemma 2.16. Let A ∈ Cm×n
r . There exist U ∈ Cm×m, V ∈ Cn×n satisfying U∗MU =

Im and V∗N−1V = In such that

A = U

(
D 0

0 0

)
V∗.

Then the weighted Moore-Penrose inverse A+
M,N can be represented

A+
M,N = N−1V

(
D−1 0

0 0

)
U∗M,
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where D = diag(σ1, σ2, ..., σr), σ1 ≥ σ2 ≥ ... ≥ σr > 0 and σ2
i is the nonzero eigenvalues

of N−1A∗MA.

For the weighted Moore-Penrose inverse X = A+
M,N , we have the following limit

representation.

Lemma 2.17. ([24], Corollary 3.4.) Let A ∈ Cm×n, A] = N−1A∗M. Then

A+
M,N = lim

λ→0
(λI + A]A)−1A].

By analogy to Lemma 2.17 can be proved the following lemma.

Lemma 2.18. Let A ∈ Cm×n, A] = N−1A∗M. Then

A+
M,N = lim

λ→0
A](λI + AA])−1.

Denote by a
]
.j and a

]
i. the jth column and the ith row of A] respectively. By putting A]

instead A∗, we obtain the proofs of the following two lemmas and theorem similar to the

proofs of Lemmas 2.5, 2.6, 2.7, 2.8 and Theorem 2.9, respectively.

Lemma 2.19. If A ∈ Cm×n
r and A] is defined as above, then

rank
(
A]A

)
. i

(
a

]
.j

)
≤ rank

(
A]A

)
,

rank
(
AA]

)
j .

(
a

]
i .

)
≤ rank

(
AA]

)
,

for all i = 1, n and j = 1, m

Analogues of the characteristic polynomial are considered in the following lemma.

Lemma 2.20. If A ∈ C
m×n and λ ∈ R, then

det
((

λIn + A]A
)

. i

(
a

]
.j

))
= c

(ij)
1 λn−1 + c

(ij)
2 λn−2 + . . . + c(ij)

n ,

det
(
(λIm + AA])j . (a

]
i.)
)

= r
(ij)
1 λm−1 + r

(ij)
2 λm−2 + . . . + r(ij)

m ,

where c
(ij)
n =

∣∣∣
(
A]A

)
. i

(
a

]
.j

)∣∣∣, r
(ij)
m = |(AA∗)j . (a

∗
i. )| and c

(ij)
s =

∑
β∈Js, n{i}

∣∣∣∣
((

A]A
)
. i

(
a

]
.j

))β

β

∣∣∣∣, r
(ij)
t =

∑
α∈It,m{j}

∣∣∣
(
(AA])j . (a

]
i. )
)α

α

∣∣∣ for all s = 1, n− 1,

t = 1, m− 1, i = 1, n, and j = 1, m.

The following theorem introduce the determinantal representations of the weighted

Moore-Penrose by analogs of the classical adjoint matrix.
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Theorem 2.21. If A ∈ C
m×n
r and r < min{m, n}, then the weighted Moore-Penrose

inverse A+
M,N =

(
ã+

ij

)
∈ C

n×m possess the following determinantal representation:

ã+
ij =

∑
β∈Jr, n{i}

∣∣∣
((

A]A
)

. i

(
a

]
.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A]A)
β
β

∣∣∣
, (2.12)

or

ã+
ij =

∑
α∈Ir,m{j}

∣∣∣
(
(AA])j . (a

]
i. )
)

α
α

∣∣∣
∑

α∈Ir, m

|(AA]) α
α|

, (2.13)

for all i = 1, n, j = 1, m.

2.3. Analogues of the Classical Adjoint Matrix for the Drazin Inverse

The Drazin inverse can be represented explicitly by the Jordan canonical form as fol-

lows.

Theorem 2.22. [25] If A ∈ Cn×n with IndA = k and

A = P

(
C 0

0 N

)
P−1

where C is nonsingular and rankC = rankAk, and N is nilpotent of order k, then

AD = P

(
C−1 0

0 0

)
P−1. (2.14)

Stanimirovic’ [26] introduced a determinantal representation of the Drazin inverse by

the following theorem.

Theorem 2.23. The Drazin inverse AD =
(
aD

ij

)
of an arbitrary matrix A ∈ C

n×n with

IndA = k possesses the following determinantal representation

aD
ij =

∑
(α,β)∈Nrk

{j, i}

∣∣∣(As)β
α

∣∣∣ ∂
∂aj i

∣∣∣Aα
β

∣∣∣

∑
(γ, δ)∈Nrk

∣∣∣(As)δγ

∣∣∣
∣∣Aγ

δ

∣∣
, 1 ≤ i, j ≤ n; (2.15)

where s ≥ k and rk = rankAs.

This determinantal representations of the Drazin inverse is based on a full-rank repre-

sentation.

We use the following limit representation of the Drazin inverse.
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Lemma 2.24. [27] If A ∈ C
n×n , then

AD = lim
λ→0

(
λIn + Ak+1

)−1
Ak,

where k = IndA, λ ∈ R+, and R+ is a set of the real positive numbers.

Since the equation (1.6) can be replaced by follows

XAk+1 = Ak,

the following lemma can be obtained by analogy to Lemma 2.24.

Lemma 2.25. If A ∈ C
n×n, then

AD = lim
λ→0

Ak
(
λIn + Ak+1

)−1
,

where k = IndA, λ ∈ R+, and R+ is a set of the real positive numbers.

Denote by a
(k)
.j and a

(k)
i. the jth column and the ith row of Ak respectively.

We consider the following auxiliary lemma.

Lemma 2.26. If A ∈ Cn×n with IndA = k, then for all i, j = 1, n

rankAk+1
i .

(
a

(k)
j.

)
≤ rankAk+1.

Proof. The matrix Ak+1
i .

(
a

(k)
j .

)
may by represent as follows




n∑
s=1

a1sa
(k)
s1 . . .

n∑
s=1

a1sa
(k)
sn

. . . . . . . . .

a
(k)
j1 . . . a

(k)
j n

. . . . . . . . .
n∑

s=1
ansa

(k)
s1 . . .

n∑
s=1

ansa
(k)
sn




Let Pl i (−al j) ∈ C
n×n, (l 6= i), be a matrix with −al j in the (l, i) entry, 1 in all diagonal

entries, and 0 in others. It is a matrix of an elementary transformation. It follows that

Ak+1
i .

(
a

(k)
j .

)
·
∏

l 6=i

Pl i (−al j) =




n∑
s6=j

a1sa
(k)
s1 . . .

n∑
s6=j

a1sa
(k)
sn

. . . . . . . . .

a
(k)
j1 . . . a

(k)
j n

. . . . . . . . .
n∑

s6=j

ansa
(k)
s1 . . .

n∑
s6=j

ansa
(k)
sn




ith
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The obtained above matrix has the following factorization.




n∑
s6=j

a1sa
(k)
s1 . . .

n∑
s6=j

a1sa
(k)
sn

. . . . . . . . .

a
(k)
j1 . . . a

(k)
j n

. . . . . . . . .
n∑

s6=j

ansa
(k)
s1 . . .

n∑
s6=j

ansa
(k)
sn




=




a11 . . . 0 . . . a1n

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

an1 . . . 0 . . . ann







a
(k)
11 a

(k)
12 . . . a

(k)
1n

a
(k)
21 a

(k)
22 . . . a

(k)
2n

. . . . . . . . . . . .

a
(k)
n1 a

(k)
n2 . . . a

(k)
nn




Denote the first matrix by

Ã :=




a11 . . . 0 . . . a1n

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

an1 . . . 0 . . . ann




jth

ith.

The matrix Ã is obtained from A by replacing all entries of the ith row and the jth column

with zeroes except for 1 in the (i, j) entry. Elementary transformations of a matrix do

not change its rank. It follows that rankAk+1
i .

(
a

(k)
j .

)
≤ min

{
rankAk, rank Ã

}
. Since

rank Ã ≥ rankAk the proof is completed.

The following lemma is proved similarly.

Lemma 2.27. If A ∈ Cn×n with IndA = k, then for all i, j = 1, n

rankAk+1
. i

(
a

(k)
.j

)
≤ rankAk+1.

Lemma 2.28. If A ∈ Cn×n and λ ∈ R, then

det
(
(λIn + Ak+1)j . (a

(k)
i. )
)

= r
(ij)
1 λn−1 + r

(ij)
2 λn−2 + . . . + r(ij)

n , (2.16)

where r
(ij)
n =

∣∣∣Ak+1
j . (a

(k)
i. )
∣∣∣ and r

(ij)
s =

∑
α∈Is,n{j}

∣∣∣
(
Ak+1

j . (a
(k)
i. )
)α

α

∣∣∣ for all s = 1, n− 1

and i, j = 1, n.

Proof. Consider the matrix
(
(λIn + Ak+1)j . (a

(k)
j. )
)
∈ C

n×n. Taking into account Theo-

rem 2.4 we obtain
∣∣∣
(
(λIn + Ak+1)j . (a

(k)
j. )
)∣∣∣ = d1λ

n−1 + d2λ
n−2 + . . . + dn, (2.17)
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where ds =
∑

α∈Is, n{j}

|(Ak+1)α
α| is the sum of all principal minors of order s that contain

the j-th row for all s = 1, n− 1 and dn = det Ak+1. Since a
(k+1)
j. =

∑
l

ajla
(k)
l. , where

a
(k)
l. is the lth row-vector of Ak for all l = 1, n, then we have on the one hand

∣∣∣
(
(λIn + Ak+1)j .(a

(k)
j. )
)∣∣∣ =

∑
l

∣∣∣
(
λI + Ak+1

)
l.

(
ajla

(k)
l.

)∣∣∣ =

∑
l

ajl ·
∣∣∣
(
λI + Ak+1

)
l.

(
a

(k)
l.

)∣∣∣
(2.18)

Having changed the order of summation, we obtain on the other hand for all s = 1, n− 1

ds =
∑

α∈Is,n{j}

∣∣(Ak+1
)α
α

∣∣ =
∑

α∈Is, n{j}

∑
l

∣∣∣
(
Ak+1

j.

(
ajla

(k)
l.

))α

α

∣∣∣ =

∑
l

ajl ·
∑

α∈Is,n{j}

∣∣∣
(
Ak+1

j.

(
a

(k)
l.

))α

α

∣∣∣
(2.19)

By substituting (2.18) and (2.19) in (2.17), and equating factors at ajl when l = i, we obtain

the equality (2.16).

Theorem 2.29. If IndA = k and rankAk+1 = rankAk = r ≤ n for A ∈ Cn×n, then the

Drazin inverse AD =
(
aD

ij

)
∈ C

n×n possess the following determinantal representations:

aD
ij =

∑
α∈Ir,n{j}

∣∣∣
(
Ak+1

j.

(
a

(k)
i.

))α

α

∣∣∣
∑

α∈Ir,n

∣∣(Ak+1)
α
α

∣∣ , [ (2.20)

and

aD
ij =

∑
β∈Jr,n{i}

∣∣∣∣
(
Ak+1

. i

(
a

(k)
.j

))β

β

∣∣∣∣
∑

β∈Jr,n

∣∣∣(Ak+1)
β
β

∣∣∣
, (2.21)

for all i, j = 1, n.

Proof. At first we shall prove the equation (2.20).

If λ ∈ R+, then rank
(
λI + Ak+1

)
= n. Hence, there exists the inverse matrix

(
λI + Ak+1

)−1
=

1

det (λI + Ak+1)




R11 R21 . . . Rn 1

R12 R22 . . . Rn 2

. . . . . . . . . . . .

R1n R2n . . . Rn n


 ,

where Rij is a cofactor in λI + Ak+1 for all i, j = 1, n. By Theorem 2.25, AD =

lim
λ→0

Ak
(
λIn + Ak+1

)−1
, so that

AD = lim
λ→0

1

det (λI + Ak+1)




∑n
s=1 a

(k)
1s R1s . . .

∑n
s=1 a

(k)
1s Rns

. . . . . . . . .∑n
s=1 a

(k)
ns R1s . . .

∑n
s=1 a

(k)
ns Rns


 =
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lim
λ→0




det(λI+Ak+1)
1.

“
a
(k)
1.

”

det(λI+Ak+1)
. . .

det(λI+Ak+1)
n.

“
a
(k)
n.

”

det(λI+Ak+1)
. . . . . . . . .

det(λI+Ak+1)
1.

“
a
(k)
n.

”

det(λI+Ak+1)
. . .

det(λI+Ak+1)
n.

“
a
(k)
n.

”

det(λI+Ak+1)




(2.22)

Taking into account Theorem 2.4 , we have

det
(
λI + Ak+1

)
= λn + d1λ

n−1 + d2λ
n−2 + . . . + dn,

where ds =
∑

α∈Is,n

∣∣(Ak+1
)α
α

∣∣ is a sum of the principal minors of Ak+1 of order s, for all

s = 1, n− 1, and dn = det Ak+1. Since rankAk+1 = r, then dn = dn−1 = . . . =
dr+1 = 0 and

det
(
λI + Ak+1

)
= λn + d1λ

n−1 + d2λ
n−2 + . . . + drλ

n−r. (2.23)

By Lemma 2.28 for all i, j = 1, n,

det
(
λI + Ak+1

)
j.

(
a

(k)
i.

)
= l

(ij)
1 λn−1 + l

(ij)
2 λn−2 + . . . + l(ij)n ,

where for all s = 1, n− 1,

l(ij)s =
∑

α∈Is,n{j}

∣∣∣
(
Ak+1

j .

(
a

(k)
i.

))α

α

∣∣∣,

and l
(i j)
n = det Ak+1

j .

(
a

(k)
i.

)
.

By Lemma 2.26, rankAk+1
j .

(
a

(k)
i .

)
≤ r, so that if s > r, then for all α ∈ Is,n{i} and

for all i, j = 1, n, ∣∣∣
(
Ak+1

j .

(
a

(k)
i.

))α

α

∣∣∣ = 0.

Therefore if r + 1 ≤ s < n, then for all i, j = 1, n,

l(ij)s =
∑

α∈Is,n{j}

∣∣∣
(
Ak+1

j.

(
a

(k)
i.

))α

α

∣∣∣ = 0,

and l
(ij)
n = detAk+1

j .

(
a

(k)
i.

)
= 0. Finally we obtain

det
(
λI + Ak+1

)
j.

(
a

(k)
i.

)
= l

(i j)
1 λn−1 + l

(i j)
2 λn−2 + . . . + l(ij)r λn−r . (2.24)

By replacing the denominators and the nominators of the fractions in the entries of the

matrix (2.22) with the expressions (2.23) and (2.24) respectively, finally we obtain

AD = lim
λ→0




l
(11)
1 λn−1+...+l

(11)
r λn−r

λn+d1λn−1+...+drλn−r . . .
l
(1n)
1 λn−1+...+l

(1n)
r λn−r

λn+d1λn−1+...+drλn−r

. . . . . . . . .

l
(n1)
1 λn−1+...+l

(n1)
r λn−r

λn+d1λn−1+...+drλn−r . . .
l
(nn)
1 λn−1+...+l

(nn)
r λn−r

λn+d1λn−1+...+drλn−r


 =
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=




l
(11)
r

dr
. . . l

(1n)
r

dr

. . . . . . . . .

l
(n1)
r

dr
. . . l

(nn)
r

dr


 ,

where for all i, j = 1, n,

l(ij)r =
∑

α∈Ir,n{j}

∣∣∣
(
Ak+1

j.

(
a

(k)
i.

))α

α

∣∣∣, dr =
∑

α∈Ir,n

∣∣∣
(
Ak+1

)α

α

∣∣∣.

The equation (2.21) can be proved similarly.

This completes the proof. Using Theorem 2.29 we evidently can obtain determinantal

representations of the group inverse and the following determinantal representation of the

identities ADA and AAD on R(Ak)

Corollary 2.30. If IndA = 1 and rankA2 = rankA = r ≤ n for A ∈ C
n×n, then the

group inverse Ag =
(
a

g
ij

)
∈ C

n×n possess the following determinantal representations:

a
g
ij =

∑
α∈Ir,n{j}

∣∣∣
(
A2

j. (ai.)
)α

α

∣∣∣
∑

α∈Ir,n

|(A2)α
α|

, (2.25)

a
g
ij =

∑
β∈Jr,n{i}

∣∣∣
(
A2

. i (a.j)
)β
β

∣∣∣

∑
β∈Jr,n

∣∣∣(A2)β
β

∣∣∣
,

for all i, j = 1, n.

Corollary 2.31. If IndA = k and rankAk+1 = rankAk = r ≤ n for A ∈ C
n×n, then

the matrix AAD = (qij) ∈ Cn×n possess the following determinantal representation

qij =

∑
α∈Ir,n{j}

∣∣∣∣
(
Ak+1

j.

(
a

(k+1)
i.

))β

β

∣∣∣∣
∑

α∈Ir,n

∣∣∣(Ak+1)
β
β

∣∣∣
, (2.26)

for all i, j = 1, n.

Corollary 2.32. If IndA = k and rankAk+1 = rankAk = r ≤ n for A ∈ C
n×n, then

the matrix ADA = (pij) ∈ Cn×n possess the following determinantal representation

pij =

∑
β∈Jr,n{i}

∣∣∣∣
(
Ak+1

. i

(
a.j

(k+1)
))β

β

∣∣∣∣

∑
β∈Jr,n

∣∣∣∣
(
Ak+1

. i

)β

β

∣∣∣∣
, (2.27)

for all i, j = 1, n.
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2.4. Analogues of the Classical Adjoint Matrix for the W-Weighted

Drazin Inverse

Cline and Greville [28] extended the Drazin inverse of square matrix to rectangular ma-

trix and called it as the weighted Drazin inverse (WDI). The W-weighted Drazin inverse

of A ∈ C
m×n with respect to W ∈ C

n×m is defined to be the unique solution X ∈ C
m×n

of the following three matrix equations:

1) (AW)k+1XW = (AW)k,

2) XWAWX = X,

3) AWX = XWA,

(2.28)

where k = max{Ind(AW), Ind(WA)}. It is denoted by X = Ad,W . In particular, when

A ∈ C
m×m and W = Im , then Ad,W reduce to AD. If A ∈ C

m×m is non-singular square

matrix and W = Im, then Ind(A) = 0 and Ad,W = AD = A−1.

The properties of WDI can be found in (e.g.,[29, 30, 31, 32]). We note the general

algebraic structures of the W-weighted Drazin inverse [29]. Let for A ∈ Cm×n and W ∈
Cn×m exist L ∈ Cm×m and Q ∈ Cn×n such that

A = L

(
A11 0

0 A22

)
Q−1, W = Q

(
W11 0

0 W22

)
L−1.

Then

Ad,W = L

(
(W11A11W11)

−1 0

0 0

)
Q−1,

where L, L, A11, W11 are non-singular matrices, and A22, W22 are nilpotent matrices.

By [27] we have the following limit representations of the W-weighted Drazin inverse,

Ad,W = lim
λ→0

(
λIm + (AW)k+2

)−1
(AW)kA (2.29)

and

Ad,W = lim
λ→0

A(WA)k
(
λIn + (WA)k+2

)−1
(2.30)

where λ ∈ R+, and R+ is a set of the real positive numbers.

Denote WA =: U and AW =: V. Denote by v
(k)
.j and v

(k)
i. the jth column and the ith

row of Vk respectively. Denote by V̄k := (AW)kA ∈ Cm×n and W̄ = WAW ∈ Cn×m.

Lemma 2.33. If AW = V = (vij) ∈ C
m×m with IndV = k, then

rank
(
Vk+2

)
. i

(
v̄

(k)
.j

)
≤ rank

(
Vk+2

)
. (2.31)

Proof. We have Vk+2 = V̄kW̄. Let Pi s (−w̄j s) ∈ Cm×m, (s 6= i), be a matrix with

−w̄j s in the (i, s) entry, 1 in all diagonal entries, and 0 in others. The matrix Pi s (−w̄j s),

(s 6= i), is a matrix of an elementary transformation. It follows that

(
Vk+2

)
. i

(
v̄

(k)
. j

)
·
∏

s6=i

Pi s (−w̄j s) =




∑
s6=j

v̄
(k)
1s w̄s1 . . . v̄

(k)
1j . . .

∑
s6=j

v̄
(k)
1s w̄sm

. . . . . . . . . . . . . . .∑
s6=j

v̄
(k)
msw̄s1 . . . v̄

(k)
mj . . .

∑
s6=j

v̄
(k)
msw̄sm




i−th

.
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We have the next factorization of the obtained matrix.




∑
s6=j

v̄
(k)
1s w̄s1 . . . v̄

(k)
1j . . .

∑
s6=j

v̄
(k)
1s w̄sm

. . . . . . . . . . . . . . .∑
s6=j

v̄
(k)
msw̄s1 . . . v̄

(k)
mj . . .

∑
s6=j

v̄
(k)
msw̄sm




i−th

=

=




v̄
(k)
11 v̄

(k)
12 . . . v̄

(k)
1n

v̄
(k)
21 v̄

(k)
22 . . . v̄

(k)
2n

. . . . . . . . . . . .

v̄
(k)
m1 v̄

(k)
m2 . . . v̄

(k)
mn







w̄11 . . . 0 . . . w̄1m

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

w̄n1 . . . 0 . . . w̄nm




i−th

j − th.

Denote W̃ :=




w̄11 . . . 0 . . . w̄1m

. . . . . . . . . . . . . . .

0 . . . 1 . . . 0

. . . . . . . . . . . . . . .

w̄n1 . . . 0 . . . w̄nm




i−th

j − th. The matrix W̃ is obtained from

W̄ = WAW by replacing all entries of the jth row and the ith column with zeroes except

for 1 in the (i, j) entry. Since elementary transformations of a matrix do not change a rank,

then rankVk+2
. i

(
v̄

(k)
.j

)
≤ min

{
rank V̄k, rankW̃

}
. It is obvious that

rank V̄k = rank (AW)kA ≥ rank (AW)k+2,

rankW̃ ≥ rank WAW ≥ rank (AW)k+2.

From this the inequality (2.31) follows immediately.

The next lemma is proved similarly.

Lemma 2.34. If WA = U = (uij) ∈ Cn×n with IndU = k, then

rank
(
Uk+2

)
i .

(
ū

(k)
j .

)
≤ rank

(
Uk+2

)
,

where Ūk := A(WA)k ∈ Cm×n

Analogues of the characteristic polynomial are considered in the following two lemmas.

Lemma 2.35. If AW = V = (vij) ∈ Cm×m with IndV = k and λ ∈ R, then

∣∣∣
(
λIm + Vk+2

)
. i

(
v̄

(k)
.j

)∣∣∣ = c
(ij)
1 λm−1 + c

(ij)
2 λm−2 + . . . + c(ij)

m , (2.32)

where c
(ij)
m = det

(
Vk+2

)
. i

(
v̄

(k)
.j

)
and c

(ij)
s =

∑
β∈Js,m{i}

det
((

Vk+2
)
. i

(
v̄

(k)
.j

))
β
β for all

s = 1, m− 1, i = 1, m, and j = 1, n.
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Proof. Consider the matrix
(
λI + Vk+2

)
. i

(v
(k+2)
. i ) ∈ Cm×m. Taking into account Theo-

rem 2.4 we obtain
∣∣∣
(
λI + Vk+2

)
. i

(
v

(k+2)
. i

)∣∣∣ = d1λ
m−1 + d2λ

m−2 + . . . + dm, (2.33)

where ds =
∑

β∈Js,m{i}

|
(
Vk+2

)β
β
| is the sum of all principal minors of order s that con-

tain the i-th column for all s = 1, m− 1 and dm = det
(
Vk+2

)
. Since v

(k+2)
. i =



∑
l

v̄
(k)
1l w̄li

∑
l

v̄
(k)
2l w̄li

...∑
l

v̄
(k)
nl w̄li




=
∑
l

v̄
(k)
. l w̄li, where v̄

(k)
. l is the lth column-vector of V̄k = (AW)kA

and WAW = W̄ = (w̄li) for all l = 1, n, then we have on the one hand

∣∣∣
(
λI + Vk+2

)
. i

(
v

(k+2)
. i

)∣∣∣ =
∑
l

∣∣∣
(
λI + Vk+2

)
. l

(
v̄

(k)
. l w̄li

)∣∣∣ =

∑
l

∣∣∣
(
λI + Vk+2

)
. i

(
v̄

(k)
. l

)∣∣∣ · w̄li

(2.34)

Having changed the order of summation, we obtain on the other hand for all s = 1, m− 1

ds =
∑

β∈Js, m{i}

∣∣∣
(
Vk+2

) β
β

∣∣∣ =
∑

β∈Js,m{i}

∑
l

∣∣∣
((

Vk+2
)
. i

(
v̄

(k)
. l w̄l i

))
β
β

∣∣∣ =

∑
l

∑
β∈Js,m{i}

∣∣∣
((

Vk+2
)
. i

(
v̄

(k)
. l

))
β
β

∣∣∣ · w̄l i.
(2.35)

By substituting (2.34) and (2.35) in (2.33), and equating factors at w̄l i when l = j, we

obtain the equality (2.32). By analogy can be proved the following lemma.

Lemma 2.36. If WA = U = (uij) ∈ Cn×n with IndU = k and λ ∈ R, then

∣∣∣(λI + Uk+2)j . (ū
(k)
i. )
∣∣∣ = r

(ij)
1 λn−1 + r

(ij)
2 λn−2 + . . . + r(ij)

n ,

where r
(ij)
n =

∣∣∣(Uk+2)j . (ū
(k)
i. )
∣∣∣ and r

(ij)
s =

∑
α∈Is,n{j}

∣∣∣
(
(Uk+2)j . (ū

(k)
i. )
)

α
α

∣∣∣ for all s =

1, n− 1, i = 1, m, and j = 1, n.

Theorem 2.37. If A ∈ Cm×n, W ∈ Cn×m with k = max{Ind(AW), Ind(WA)} and

rank(AW)k = r, then the W-weighted Drazin inverse Ad,W =
(
a

d,W
ij

)
∈ Cm×n with

respect to W possess the following determinantal representations:

a
d,W
ij =

∑
β∈Jr, m{i}

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣

∑
β∈Jr, m

∣∣∣(AW)k+2 β
β

∣∣∣
, (2.36)
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or

a
d,W
ij =

∑
α∈Ir,n{j}

∣∣∣
(
(WA)k+2

j . (ū
(k)
i. )
)

α
α

∣∣∣

∑
α∈Ir, n

∣∣∣(WA)k+2 α
α

∣∣∣
. (2.37)

where v̄
(k)
.j is the jth column of V̄k = (AW)kA for all j = 1, ..., m and ū

(k)
i. is the ith row

of Ūk = A(WA)k for all i = 1, ..., n.

Proof. At first we shall prove (2.36). By (2.29),

Ad,W = lim
λ→0

(
λIm + (AW)k+2

)−1
(AW)kA.

Let

(
λIm + (AW)k+2

)−1
=

1

det (λIm + (AW)k+2)




L11 L21 . . . Lm1

L12 L22 . . . Lm2

. . . . . . . . . . . .

L1m L2m . . . Lmm


 ,

where Lij is a left ij-th cofactor of a matrix λIm + (AW)k+2. Then we have

(
λIm + (AW)k+2

)−1
(AW)kA =

= 1
det(λIm+(AW)k+2)




m∑
s=1

Ls1v̄
(k)
s1

m∑
s=1

Ls1v̄
(k)
s2 . . .

m∑
s=1

Ls1v̄
(k)
sn

m∑
s=1

Ls2v̄
(k)
s1

m∑
s=1

Ls2v̄
(k)
s2 . . .

m∑
s=1

Ls2v̄
(k)
sn

. . . . . . . . . . . .
m∑

s=1
Lsmv̄

(k)
s1

m∑
s=1

Lsmv̄
(k)
s2 . . .

m∑
s=1

Lsmv̄
(k)
sn




.

By (2.29), we obtain

Ad,W = lim
λ→0




˛̨
˛(λIm+(AW)k+2)

.1

“
v̄

(k)
.1

”˛̨
˛

|(λIm+(AW)k+2)|
. . .

˛̨
˛(λIm+(AW)k+2)

.1

“
v̄

(k)
.n

”˛̨
˛

|(λIm+(AW)k+2)|
. . . . . . . . .˛̨
˛(λIm+(AW)k+2)

.n

“
v̄

(k)
.1

”˛̨
˛

|(λIm+(AW)k+2)|
. . .

˛̨
˛(λIm+(AW)k+2)

.m

“
v̄

(k)
.n

”˛̨
˛

|(λIm+(AW)k+2)|




. (2.38)

By Theorem 2.4 we have

∣∣∣
(
λIm + (AW)k+2

)∣∣∣ = λm + d1λ
m−1 + d2λ

m−2 + . . . + dm,

where ds =
∑

β∈Js,m

∣∣∣
(
λIm + (AW)k+2

) β
β

∣∣∣ is a sum of principal minors of (AW)k+2 of

order s for all s = 1, m− 1 and dm =
∣∣(AW)k+2

∣∣.
Since

rank(AW)k+2 = rank(AW)k+1 = rank(AW)k = r,
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then

dm = dm−1 = . . . = dr+1 = 0.

It follows that det
(
λIm + (AW)k+2

)
= λm + d1λ

m−1 + d2λ
m−2 + . . . + drλ

m−r.

By Lemma 2.35

∣∣∣
(
λIm + (AW)k+2

)
. i

(
v̄

(k)
.j

)∣∣∣ = c
(ij)
1 λm−1 + c

(ij)
2 λm−2 + . . . + c(ij)

m

for i = 1, m and j = 1, n, where c
(ij)
s =

∑
β∈Js, m{i}

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ for all s =

1, m− 1 and c
(ij)
m =

∣∣∣(AW)k+2
.i

(
v̄

(k)
.j

)∣∣∣.
We shall prove that c

(ij)
k = 0, when k ≥ r + 1 for i = 1, m and j = 1, n. By Lemma

2.33
(
(AW)k+2

. i

(
v̄

(k)
.j

))
≤ r, then the matrix

(
(AW)k+2

. i

(
v̄

(k)
.j

))
has no more r linearly

independent columns.

Consider
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β, when β ∈ Js,m{i}. It is a principal submatrix of

(
(AW)k+2

. i

(
v̄

(k)
.j

))
of order s ≥ r + 1. Deleting both its i-th row and column, we obtain

a principal submatrix of order s−1 of (AW)k+2. We denote it by M. The following cases

are possible.

• Let s = r + 1 and det M 6= 0. In this case all columns of M are right-

linearly independent. The addition of all of them on one coordinate to columns of(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β keeps their right-linear independence. Hence, they are basis

in a matrix
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β , and the i-th column is the right linear combina-

tion of its basis columns. From this,

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0, when β ∈ Js,n{i}

and s = r + 1.

• If s = r + 1 and det M = 0, than p, (p ≤ r), columns are basis in M and in(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β. Then

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0 as well.

• If s > r + 1, then det M = 0 and p, (p < r), columns are basis in the both matrices

M and
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β. Therefore,

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0.

Thus in all cases we have

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0, when β ∈ Js,m{i} and r + 1 ≤

s < m. From here if r + 1 ≤ s < m, then

c(ij)
s =

∑

β∈Js,m{i}

∣∣∣
(
(AW)k+2

. i

(
v̄

(k)
.j

))
β
β

∣∣∣ = 0,

and c
(ij)
m = det

(
(AW)k+2

. i

(
v̄

(k)
.j

))
= 0 for i = 1, m and j = 1, n.

Hence,

∣∣∣
(
λI + (AW)k+2

)
. i

(
v̄

(k)
. j

)∣∣∣ = c
(ij)
1 λm−1 + . . . + c

(ij)
r λm−r for i = 1, m and

j = 1, n. By substituting these values in the matrix from (2.38), we obtain
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Ad,W = lim
λ→0




c
(11)
1 λm−1+...+c

(11)
r λm−r

λm+d1λm−1+...+drλm−r . . .
c
(1n)
1 λm−1+...+c

(1n)
r λm−r

λm+d1λm−1+...+drλm−r

. . . . . . . . .

c
(m1)
1 λm−1+...+c

(m1)
r λm−r

λm+d1λm−1+...+drλm−r . . .
c
(mn)
1 λm−1+...+c

(mn)
r λm−r

λm+d1λm−1+...+drλm−r


 =




c
(11)
r

dr
. . . c

(1n)
r

dr

. . . . . . . . .

c
(m1)
r

dr
. . . c

(mn)
r

dr


 .

where c
(ij)
r =

∑
β∈Jr, m{i}

∣∣∣
((

Ak+1
)

. i

(
a

(k)
.j

))
β
β

∣∣∣ and dr =
∑

β∈Jr, m

∣∣∣
(
Ak+1

) β
β

∣∣∣. Thus, we

have obtained the determinantal representation of Ad,W by (2.36).

By analogy can be proved (2.37).

3. Cramer’s Rules for Generalized Inverse Solutions of Systems

of Linear Equations

An obvious consequence of a determinantal representation of the inverse matrix by the

classical adjoint matrix is the Cramer rule. As we know, Cramer’s rule gives an explicit

expression for the solution of nonsingular linear equations. In [33], Robinson gave an ele-

gant proof of Cramer’s rule which aroused great interest in finding determinantal formulas

for solutions of some restricted linear equations both consistent and nonconsistent. It has

been widely discussed by Robinson [33], Ben-Israel [34], Verghese [35], Werner [36], Chen

[37], Ji [38] ,Wang [39], Wei [31].

In this section we demonstrate that the obtained analogues of the adjoint matrix for

the generalized inverse matrices enable us to obtain natural analogues of Cramer’s rule for

generalized inverse solutions of systems of linear equations.

3.1. Cramer’s Rule for the Least Squares Solution with the Minimum Norm

Definition 3.1. Suppose in a complex system of linear equations:

A · x = y (3.1)

the coefficient matrix A ∈ C
m×n
r and a column of constants y = (y1, . . . , ym)T ∈ C

m.

The least squares solution with the minimum norm of (3.1) is the vector x0 ∈ C
n satisfying

∥∥x0
∥∥ = min

x̃∈Cn

{
‖x̃‖ | ‖A · x̃ − y‖ = min

x∈Cn
‖A · x − y‖

}
,

where C
n is an n-dimension complex vector space.

If the equation (3.1) has no precision solutions, then x0 is its optimal approximation.

The following important proposition is well-known.

Theorem 3.2. [21] The vector x = A+y is the least squares solution with the minimum

norm of the system (3.1).
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Theorem 3.3. The following statements are true for the system of linear equations (3.1).

i) If rankA = n, then the components of the least squares solution with the minimum

norm x0 =
(
x0

1, . . . , x
0
n

)T
are obtained by the formula

x0
j =

det(A∗A). j (f)

detA∗A
,
(
∀j = 1, n

)
, (3.2)

where f = A∗y.

ii) If rankA = r ≤ m < n, then

x0
j =

∑
β∈Jr,n{j}

∣∣∣((A∗A). j(f))
β
β

∣∣∣

dr (A∗A)
,
(
∀j = 1, n

)
. (3.3)

Proof. i) If rankA = n, then we can represent A+ by (2.10). By multiplying A+ into y

we get (3.2).

ii) If rankA = k ≤ m < n, then A+ can be represented by (2.5). By multiplying A+

into y the least squares solution with the minimum norm of the linear system (3.1) is given

by components as in (3.3). Using (2.7) and (2.11), we can obtain another representation

of the Cramer rule for the least squares solution with the minimum norm of a linear system.

Theorem 3.4. The following statements are true for a system of linear equations written in

the form x · A = y.

i) If rankA = m, then the components of the least squares solution x0 = yA+ are

obtained by the formula

x0
i =

det(AA∗)i . (g)

det AA∗
,
(
∀i = 1, m

)
,

where g = yA∗.

ii) If rankA = r ≤ n < m, then

x0
i =

∑
α∈Ir,m{i}

|((AA∗) i .(g))α
α|

dr (AA∗)
,
(
∀i = 1, m

)
.

Proof. The proof of this theorem is analogous to that of Theorem 3.3.

Remark 3.5. The obtained formulas of the Cramer rule for the least squares solution differ

from similar formulas in [34, 36, 37, 38, 39]. They give a closer analogue to usual Cramer’s

rule for consistent nonsingular systems of linear equations.
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3.2. Cramer’s Rule for the Drazin Inverse Solution

In some situations, however, people pay more attention to the Drazin inverse solution

of singular linear systems [40, 41, 42, 43].

Consider a general system of linear equations (3.1), where A ∈ C
n×n and x, y are

vectors in C
n. R(A) denotes the range of A and N (A) denotes the null space of A.

The characteristic of the Drazin inverse solution ADy is given in [24] by the following

theorem.

Theorem 3.6. Let A ∈ C
n×n with Ind(A) = k. Then ADy is both the unique solution in

R(Ak) of

Ak+1x = Aky, (3.4)

and the unique minimal P-norm least squares solution of (3.1).

Remark 3.7. The P-norm is defined as ‖x‖P = ‖P−1x‖ for x ∈ C
n, where P is a

nonsingular matrix that transforms A into its Jordan canonical form (2.14).

In other words, the the Drazin inverse solution x = ADy is the unique solution of the

problem: for a given A and a given vector y ∈ R(Ak), find a vector x ∈ R(Ak) satisfying

Ax = y with Ind A = k.

In general, unlike A+y, the Drazin inverse solution ADy is not a true solution of a

singular system (3.1), even if the system is consistent. However, Theorem 3.6 means that

ADy is the unique minimal P-norm least squares solution of (3.1).

A determinantal representation of the P-norm least squares solution of a system of

linear equations (3.1) by the determinantal representation (2.15) of the Drazin inverse has

been obtained in [44].

We give Cramer’s rule for the P-norm least squares solution (the Drazin inverse solu-

tion) of (3.1) in the following theorem.

Theorem 3.8. Let A ∈ Cn×n with Ind(A) = k and rankAk+1 = rankAk = r. Then

the unique minimal P-norm least squares solution x̂ = (x̂1, . . . , x̂n)T of the system (3.1) is

given by

x̂i =

∑
β∈Jr, n{i}

∣∣∣∣
(
Ak+1

. i (f)
)β

β

∣∣∣∣
∑

β∈Jr,n

∣∣∣(Ak+1)
β
β

∣∣∣
∀i = 1, n, (3.5)

where f = Aky.

Proof. Representing the Drazin inverse by (2.21) and by virtue of Theorem 3.6, we have

x̂ =




x̂1

. . .

x̂n


 = ADy =

1

dr (Ak+1)




n∑
s=1

d1sys

. . .
n∑

s=1
dnsys




.
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Therefore,

x̂i =
1

dr (Ak+1)

n∑

s=1

∑

β∈Jr,n{i}

∣∣∣∣
(
Ak+1

. i

(
a(k)

. s

))β

β

∣∣∣∣ · ys =

=
1

dr (Ak+1)

∑

β∈Jr, n{i}

n∑

s=1

∣∣∣∣
(
Ak+1

. i

(
a(k)

. s

))β

β

∣∣∣∣ · ys =

=
1

dr (Ak+1)

∑

β∈Jr, n{i}

n∑

s=1

∣∣∣∣
(
Ak+1

. i

(
a(k)

. s · ys

))β

β

∣∣∣∣.

From this (3.5) follows immediately. If we shall present a system of linear equations as,

xA = y, (3.6)

where A ∈ Cn×n with Ind(A) = k and rankAk+1 = rankAk = r, then by using

the Drazin inverse determinantal representation (2.20) we have the following analog of

Cramer’s rule for the Drazin inverse solution of (3.6):

x̂i =

∑
α∈Ir, n{i}

∣∣∣
(
Ak+1

i . (g)
)α

α

∣∣∣
∑

α∈Ir,n

∣∣(Ak+1)
α
α

∣∣ , ∀i = 1, n,

where g = yAk.

3.3. Cramer’s Rule for the W-Weighted Drazin Inverse Solution

Consider restricted linear equations

WAWx = y, (3.7)

where A ∈ Cm×n, W ∈ Cn×m, k1 = Ind(AW), k2 = Ind(WA) with y ∈ R((WA)k2)

and rank(WA)k2 = rank(AW)k1 = r.

In [31], Wei has showed that there exists an unique solution Ad,Wy of the linear equa-

tions (3.7) and given a Cramer rule for the W-weighted Drazin inverse solution of (3.7) by

the following theorem.

Theorem 3.9. Let A, W be the same as in (3.7). Suppose that U ∈ C
n×(n−r)
n−r and V∗ ∈

C
m×(m−r)
m−r be matrices whose columns form bases for N ((WA)k2) and N ((AW)k1), re-

spectively. Then the unique W-weighted Drazin inverse solution x = (x1, ..., xm of (3.7)

satisfies

xi = det

(
WAW(i → y) U

V(i → 0) 0

)/
det

(
WAW U

V 0

)

where i = 1, m.
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Let k = max{k1, k2}. Denote f = (AW)kA · y. Then by Theorem 2.37 using the

determinantal representation (2.36) of the W-weighted Drazin inverse Ad,W , we evidently

obtain the following Cramer’s rule of the W-weighted Drazin inverse solution of (3.7),

xi =

∑
β∈Jr, m{i}

∣∣∣
(
(AW)k+2

. i (f)
)

β
β

∣∣∣

∑
β∈Jr, m

∣∣∣(AW)k+2 β
β

∣∣∣
, (3.8)

where i = 1, m.

Remark 3.10. Note that for (3.8) unlike Theorem 3.9, we do not need auxiliary matrices

U and V.

3.4. Examples

1. Let us consider the system of linear equations.





2x1 − 5x3 + 4x4 = 1,

7x1 − 4x2 − 9x3 + 1.5x4 = 2,

3x1 − 4x2 + 7x3 − 6.5x4 = 3,

x1 − 4x2 + 12x3 − 10.5x4 = 1.

(3.9)

The coefficient matrix of the system is A =




2 0 −5 4
7 −4 −9 1.5

3 −4 7 −6.5
1 −4 12 −10.5


. The rank of A is

equal to 3. We have

A∗ =




2 7 3 1

0 −4 −4 −4
−5 −9 7 12

4 1.5 −6.5 −10.5


 , A∗A =




63 −44 −40 −11.5

−44 48 −40 62
−40 −40 299 −205

−11.5 62 −205 170.75


 .

At first we obtain entries of A+ by (2.10):

d3(A
∗A) =

∣∣∣∣∣∣

63 −44 −40

−44 48 −40
−40 −40 299

∣∣∣∣∣∣
+

∣∣∣∣∣∣

63 −44 −11.5

−44 48 62
−11.5 62 170.75

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

63 −40 −11.5

−40 299 −205
−11.5 −205 170.75

∣∣∣∣∣∣
+

∣∣∣∣∣∣

48 −40 62

−40 299 −205
62 −205 170.75

∣∣∣∣∣∣
= 102060,

l11 =

∣∣∣∣∣∣

2 −44 −40
0 48 −40

−5 −40 299

∣∣∣∣∣∣
+

∣∣∣∣∣∣

2 −44 −11.5
0 48 62

4 62 170.75

∣∣∣∣∣∣
+

∣∣∣∣∣∣

2 −40 −11.5
−5 299 −205

4 −205 170.75

∣∣∣∣∣∣
=

= 25779,
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and so forth. Continuing in the same way, we get

A+ =
1

102060




25779 −4905 20742 −5037
−3840 −2880 −4800 −960

28350 −17010 22680 −5670
39558 −18810 26484 −13074


 .

Now we obtain the least squares solution of the system (3.9) by the matrix method.

x0 =




x0
1

x0
2

x0
3

x0
4


 =

1

102060




25779 −4905 20742 −5037

−3840 −2880 −4800 −960
28350 −17010 22680 −5670

39558 −18810 26484 −13074


 ·




1

2
3

1


 =

=
1

102060




73158
−24960

56700
68316


 =




12193
17010
− 416

1071
5
9

5693
8505




Next we get the least squares solution with minimum norm of the system (3.9) by the

Cramer rule (3.3), where

f =




2 7 3 1

0 −4 −4 −4
−5 −9 7 12

4 1.5 −6.5 −10.5


 ·




1

2
3

1


 =




26

−24
10

−23


 .

Thus we have

x0
1 =

1

102060




∣∣∣∣∣∣

26 −44 −40

−24 48 −40
10 −40 299

∣∣∣∣∣∣
+

∣∣∣∣∣∣

26 −44 −11.5

−24 48 62
−23 62 170.75

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

26 −40 −11.5
10 299 −205
23 −205 170.75

∣∣∣∣∣∣


 =

73158

102060
=

12193

17010
;

x0
2 =

1

102060




∣∣∣∣∣∣

63 26 −40

−44 −24 −40
−40 10 299

∣∣∣∣∣∣
+

∣∣∣∣∣∣

63 26 −11.5

−44 −24 62
−11.5 −23 170.75

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

−24 −40 62
10 299 −205
−23 −205 170.75

∣∣∣∣∣∣


 =

−24960

102060
= −

416

1071
;

x0
3 =

1

102060




∣∣∣∣∣∣

63 −44 26

−44 48 −24
−40 −40 10

∣∣∣∣∣∣
+

∣∣∣∣∣∣

63 26 −11.5

−40 10 −205
−11.5 −23 170.75

∣∣∣∣∣∣
+
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+

∣∣∣∣∣∣

48 −24 62
−40 10 −205

62 −23 170.75

∣∣∣∣∣∣


 =

56700

102060
=

5

9
;

x0
4 =

1

102060




∣∣∣∣∣∣

63 −44 26
−44 48 −24

−11.5 62 −23

∣∣∣∣∣∣
+

∣∣∣∣∣∣

63 −40 26
−40 299 10

−11.5 −205 −23

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

48 −40 −24
−40 299 10

62 −205 −23

∣∣∣∣∣∣


 =

68316

102060
=

5693

8505
.

2. Let us consider the following system of linear equations.




x1 − x2 + x3 + x4 = 1,

x2 − x3 + x4 = 2,

x1 − x2 + x3 + 2x4 = 3,

x1 − x2 + x3 + x4 = 1.

(3.10)

The coefficient matrix of the system is the matrix A =




1 −1 1 1

0 1 −1 1
1 −1 1 2

1 −1 1 1


. It is easy to

verify the following:

A2 =




3 −4 4 3

0 1 −1 0
4 −5 5 4

3 −4 4 3


 , A3 =




10 −14 14 10

−1 2 −2 −1
13 −18 18 13

10 −14 14 10


 ,

and rankA = 3, rankA2 = rankA3 = 2. This implies k = Ind(A) = 2. We obtain

entries of AD by (2.21).

d2(A
3) =

∣∣∣∣
10 −14
−1 2

∣∣∣∣ +
∣∣∣∣

10 14
13 18

∣∣∣∣+
∣∣∣∣

10 10
10 10

∣∣∣∣

+

∣∣∣∣
2 −2

−18 18

∣∣∣∣+
∣∣∣∣

2 −1
−14 10

∣∣∣∣ +
∣∣∣∣

18 13
14 10

∣∣∣∣ = 8,

d11 =

∣∣∣∣
3 −14
0 2

∣∣∣∣+
∣∣∣∣

3 14
4 18

∣∣∣∣+
∣∣∣∣

3 10
3 10

∣∣∣∣ = 4,

and so forth.

Continuing in the same way, we get AD =




0.5 0.5 −0.5 0.5

1.75 2.5 −2.5 1.75
1.25 1.5 −1.5 1.25

0.5 0.5 −0.5 0.5


 . Now we

obtain the Drazin inverse solution x̂ of the system (3.10) by the Cramer rule (3.5), where

g = A2y =




3 −4 4 3
0 1 −1 0

4 −5 5 4
3 −4 4 3


 ·




1
2

3
1


 =




10
−1

13
10


 .
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Thus we have

x̂1 =
1

8

(∣∣∣∣
10 −14
−1 2

∣∣∣∣ +
∣∣∣∣

10 14
13 18

∣∣∣∣ +
∣∣∣∣

10 10
10 10

∣∣∣∣
)

=
1

2
,

x̂2 =
1

8

(∣∣∣∣
10 10
−1 −1

∣∣∣∣+
∣∣∣∣
−1 −2
13 18

∣∣∣∣+
∣∣∣∣
−1 −1
10 10

∣∣∣∣
)

= 1,

x̂3 =
1

8

(∣∣∣∣
10 10

13 13

∣∣∣∣ +
∣∣∣∣

2 −1

−18 13

∣∣∣∣ +
∣∣∣∣

13 13

10 10

∣∣∣∣
)

= 1,

x̂4 =
1

8

(∣∣∣∣
10 10

10 10

∣∣∣∣+
∣∣∣∣

2 −1

−14 10

∣∣∣∣ +
∣∣∣∣

18 13

14 10

∣∣∣∣
)

=
1

2
.

4. Cramer’s Rule of the Generalized Inverse Solutions of Some

Matrix Equations

Matrix equation is one of the important study fields of linear algebra. Linear matrix

equations, such as

AX = C, (4.1)

XB = D, (4.2)

and

AXB = D, (4.3)

play an important role in linear system theory therefore a large number of papers have

presented several methods for solving these matrix equations [45, 46, 47, 48, 49]. In [50],

Khatri and Mitra studied the Hermitian solutions to the matrix equations (4.1) and (4.3) over

the complex field and the system of the equations (4.1) and (4.2). Wang, in [51, 52], and Li

and Wu, in [53] studied the bisymmetric, symmetric and skew-antisymmetric least squares

solution to this system over the quaternion skew field. Extreme ranks of real matrices in

least squares solution of the equation (4.3) was investigated in [54] over the complex field

and in [55] over the quaternion skew field.

As we know, the Cramer rule gives an explicit expression for the solution of nonsingular

linear equations. Robinson’s result ( [33]) aroused great interest in finding determinantal

representations of a least squares solution as some analogs of Cramer’s rule for the matrix

equations (for example, [56, 57, 58]). Cramer’s rule for solutions of the restricted matrix

equations (4.1), (4.2) and (4.3) was established in [59, 60, 61].

In this section, we obtain analogs of the Cramer rule for generalized inverse solutions

of the aforementioned equations without any restriction.

We shall show numerical examples to illustrate the main results as well.

4.1. Cramer’s Rule for the Minimum Norm Least Squares Solution of Some

Matrix Equations

Definition 4.1. Consider a matrix equation

AX = B, (4.4)
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where A ∈ C
m×n, B ∈ C

m×s are given, X ∈ C
n×s is unknown. Suppose

S1 = {X|X ∈ C
n×s, ‖AX−B‖ = min}.

Then matrices X ∈ Cn×s such that X ∈ S1 are called least squares solutions of the matrix

equation (4.4). If XLS = minX∈S1‖X‖, then XLS is called the minimum norm least

squares solution of (4.4).

If the equation (4.4) has no precision solutions, then XLS is its optimal approximation.

The following important proposition is well-known.

Lemma 4.2. ([38]) The least squares solutions of (4.4) are

X = A+B + (In − A+A)C,

where A ∈ Cm×n, B ∈ Cm×s are given, and C ∈ Cn×s is an arbitrary matrix. The least

squares minimum norm solution is XLS = A+B.

We denote A∗B =: B̂ = (b̂ij) ∈ C
n×s.

Theorem 4.3. (i) If rankA = r ≤ m < n, then we have for the minimum norm least

squares solution XLS = (xij) ∈ C
n×s of (4.4) for all i = 1, n, j = 1, s

xij =

∑
β∈Jr, n{i}

∣∣∣
(
(A∗A) . i

(
b̂.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A∗A)
β
β

∣∣∣
. (4.5)

(ii) If rankA = n, then for all i = 1, n, j = 1, s we have

xi j =
det(A∗A). i

(
b̂.j

)

det(A∗A)
, (4.6)

where b̂.j is the jth column of B̂ for all j = 1, s.

Proof. i) If rankA = r ≤ m < n, then by Theorem 2.9 we can represent A+ by (2.5).

Therefore, we obtain for all i = 1, n, j = 1, s

xij =

m∑

k=1

a+
ikbkj =

m∑

k=1

∑
β∈Jr, n{i}

∣∣∣((A∗A) . i (a∗.k)) β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
· bkj =

∑
β∈Jr, n{i}

∑m
k=1

∣∣∣((A∗A) . i (a
∗
.k))

β
β

∣∣∣ · bkj

∑
β∈Jr, n

∣∣∣(A∗A) β
β

∣∣∣
.
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Since
∑
k

a∗. kbkj =




∑
k

a∗1kbkj

∑
k

a∗2kbkj

...∑
k

a∗nkbkj




= b̂.j , then it follows (4.5).

(ii) The proof of this case is similarly to that of (i) by using Corollary 2.3.

Definition 4.4. Consider a matrix equation

XA = B, (4.7)

where A ∈ C
m×n, B ∈ C

s×n are given, X ∈ C
s×m is unknown. Suppose

S2 = {X|X ∈ C
s×m, ‖XA− B‖ = min}.

Then matrices X ∈ Cs×m such that X ∈ S2 are called least squares solutions of the

matrix equation (4.7). If XLS = minX∈S2‖X‖, then XLS is called the minimum norm

least squares solution of (4.7).

The following lemma can be obtained by analogy to Lemma 4.2.

Lemma 4.5. The least squares solutions of (4.7) are

X = BA+ + C(Im − AA+),

where A ∈ Cm×n, B ∈ Cs×n are given, and C ∈ Cs×m is an arbitrary matrix. The

minimum norm least squares solution is XLS = BA+.

We denote BA∗ =: B̌ = (b̌ij) ∈ Cs×m.

Theorem 4.6. (i) If rankA = r ≤ n < m, then we have for the minimum norm least

squares solution XLS = (xij) ∈ Cs×m of (4.7) for all i = 1, s, j = 1, m

xij =

∑
α∈Ir,m{j}

∣∣∣
(
(AA∗) j .

(
b̌i .

))
α
α

∣∣∣
∑

α∈Ir, m

|(AA∗) α
α|

. (4.8)

(ii) If rankA = m, then for all i = 1, s, j = 1, m we have

xi j =
det(AA∗)j.

(
b̌i .

)

det(AA∗)
, (4.9)

where b̌i. is the ith row of B̌ for all i = 1, s.

Proof. (i) If rankA = r ≤ n < m, then by Theorem 2.9 we can represent A+ by (2.6).

Therefore, for all i = 1, s, j = 1, m we obtain

xij =

n∑

k=1

bika
+
kj =

n∑

k=1

bik ·

∑
α∈Ir,m{j}

∣∣∣
(
(AA∗) j . (a

∗
k .)
)

α
α

∣∣∣
∑

α∈Ir, m

|(AA∗) α
α|

=
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∑n
k=1 bik

∑
α∈Ir,m{j}

∣∣∣
(
(AA∗) j . (a

∗
k .)
)

α
α

∣∣∣
∑

α∈Ir, m

|(AA∗) α
α|

Since for all i = 1, s

∑

k

bika
∗
k . =

(∑
k

bika
∗
k1

∑
k

bika
∗
k2 · · ·

∑
k

bika
∗
km

)
= b̌i.,

then it follows (4.8).

(ii) The proof of this case is similarly to that of (i) by using Corollary 2.3.

Definition 4.7. Consider a matrix equation

AXB = D, (4.10)

where A ∈ C
m×n
r1

, B ∈ C
p×q
r2 , D ∈ C

m×q are given, X ∈ C
n×p is unknown. Suppose

S3 = {X|X ∈ C
n×p, ‖AXB− D‖ = min}.

Then matrices X ∈ Cn×p such that X ∈ S3 are called least squares solutions of the matrix

equation (4.10). If XLS = minX∈S3‖X‖, then XLS is called the minimum norm least

squares solution of (4.10).

The following important proposition is well-known.

Lemma 4.8. ([36]) The least squares solutions of (4.10) are

X = A+DB+ + (In −A+A)V + W(Ip − BB+),

where A ∈ C
m×n
r1

, B ∈ C
p×q
r2 , D ∈ C

m×q are given, and {V, W} ⊂ C
n×p are arbitrary

quaternion matrices. The minimum norm least squares solution is XLS = A+DB+.

We denote D̃ = A∗DB∗.

Theorem 4.9. (i) If rankA = r1 < n and rankB = r2 < p, then for the minimum

norm least squares solution XLS = (xij) ∈ Cn×p of (4.10) we have

xij =

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d B

. j

)
β
β

∣∣∣

∑
β∈Jr1,n

∣∣∣(A∗A)β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗)αα|
, (4.11)

or

xij =

∑
α∈Ir2,p{j}

∣∣∣(BB∗) j .

(
d A

i .

)
α
α

∣∣∣

∑
β∈Jr1,n

∣∣∣(A∗A)β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗)αα|
, (4.12)
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where

dB

. j =




∑

α∈Ir2,p{j}

∣∣∣(BB∗)j.

(
d̃1.

)
α
α

∣∣∣, ...,
∑

α∈Ir2,p{j}

∣∣∣(BB∗)j.

(
d̃n.

)
α
α

∣∣∣




T

, (4.13)

dA

i . =




∑

β∈Jr1,n{i}

∣∣∣(A∗A).i

(
d̃.1

)
β
β

∣∣∣, ...,
∑

α∈Ir1,n{i}

∣∣∣(A∗A).i

(
d̃. p

)
β
β

∣∣∣


 (4.14)

are the column-vector and the row-vector, respectively. d̃i . is the i-th row of D̃ for

all i = 1, n, and d̃. j is the j-th column of D̃ for all j = 1, p.

(ii) If rankA = n and rankB = p, then for the least squares solution XLS = (xij) ∈

C
n×p of (4.10) we have for all i = 1, n, j = 1, p,

xi j =
det
(
(A∗A). i

(
dB

.j

))

det(A∗A) · det(BB∗)
, (4.15)

or

xi j =
det
(
(BB∗)j.

(
dA

i .

))

det(A∗A) · det(BB∗)
, (4.16)

where

dB

.j :=
[
det
(
(BB∗)j.

(
d̃1 .

))
, . . . , det

(
(BB∗)j.

(
d̃n .

))]T
, (4.17)

dA

i . :=
[
det
(
(A∗A). i

(
d̃.1

))
, . . . , det

(
(A∗A). i

(
d̃.p

))]
(4.18)

are respectively the column-vector and the row-vector.

(iii) If rankA = n and rankB = r2 < p, then for the least squares solution XLS =
(xij) ∈ Cn×p of (4.10) we have

xij =
det
(
(A∗A). i

(
dB

.j

))

det(A∗A)
∑

α∈Ir2,p

|(BB∗)α
α|

, (4.19)

or

xij =

∑
α∈Ir2,p{j}

∣∣∣(BB∗) j .

(
d A

i .

)
α
α

∣∣∣

det(A∗A)
∑

α∈Ir2,p

|(BB∗)α
α|

, (4.20)

where dB
. j is (4.13) and dA

i . is (4.18).

(iiii) If rankA = r1 < m and rankB = p, then for the least squares solution XLS =

(xij) ∈ C
n×p of (4.10) we have

xi j =
det
(
(BB∗)j.

(
dA

i .

))

∑
β∈Jr1,n

∣∣∣(A∗A)β
β

∣∣∣ · det(BB∗)
, (4.21)
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or

xi j =

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d B

. j

)
β
β

∣∣∣

∑
β∈Jr1,n

∣∣∣(A∗A)ββ

∣∣∣ det(BB∗)
, (4.22)

where dB

. j is (4.17) and dA

i . is (4.14).

Proof. (i) If A ∈ C
m×n
r1

, B ∈ C
p×q
r2 and r1 < n, r2 < p, then by Theorem 2.9 the Moore-

Penrose inverses A+ =
(
a+

ij

)
∈ C

n×m and B+ =
(
b+
ij

)
∈ C

q×p possess the following

determinantal representations respectively,

a+
ij =

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
a∗.j

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
,

b+
ij =

∑
α∈Ir2,p{j}

|(BB∗)j . (b
∗
i. )

α
α|

∑
α∈Ir2,p

|(BB∗) α
α|

. (4.23)

Since by Theorem 4.8 XLS = A+DB+, then an entry of XLS = (xij) is

xij =

q∑

s=1

(
m∑

k=1

a+
ikdks

)
b+
sj. (4.24)

Denote by d̂.s the sth column of A∗D =: D̂ = (d̂ij) ∈ Cn×q for all s = 1, q. It follows

from
∑
k

a∗. kdks = d̂. s that

m∑

k=1

a+
ikdks =

m∑

k=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i (a
∗
.k) β

β

∣∣∣

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
· dks =

∑
β∈Jr1, n{i}

m∑
k=1

∣∣∣(A∗A) . i (a∗.k) β
β

∣∣∣ · dks

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
=

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d̂. s

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
(4.25)

Suppose es. and e. s are respectively the unit row-vector and the unit column-vector whose

components are 0, except the sth components, which are 1. Substituting (4.25) and (4.23)

in (4.24), we obtain

xij =

q∑

s=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d̂. s

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣

∑
α∈Ir2,p{j}

|(BB∗)j . (b
∗
s. )

α
α|

∑
α∈Ir2,p

|(BB∗) α
α|

.
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Since

d̂. s =

n∑

l=1

e. ld̂ls, b∗
s. =

p∑

t=1

b∗stet.,

q∑

s=1

d̂lsb
∗
st = d̃lt, (4.26)

then we have

xij =

q∑
s=1

p∑
t=1

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i (e. l)
β
β

∣∣∣d̂lsb
∗
st

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗) α
α|

=

p∑
t=1

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i (e. l)
β
β

∣∣∣ d̃lt

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗) α
α|

. (4.27)

Denote by

dA

it :=

∑

β∈Jr1, n{i}

∣∣∣(A∗A) . i

(
d̃. t

)
β
β

∣∣∣ =

n∑

l=1

∑

β∈Jr1, n{i}

∣∣∣(A∗A) . i (e. l)
β
β

∣∣∣d̃lt

the t-th component of a row-vector dA

i . = (dA

i1, ..., d
A

ip) for all t = 1, p. Substituting it in

(4.27), we have

xij =

p∑
t=1

dA
it

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗) α
α|

.

Since
p∑

t=1
dA

it et. = dA

i . , then it follows (4.12).

If we denote by

dB

lj :=

p∑

t=1

d̃lt

∑

α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α| =

∑

α∈Ir2,p{j}

∣∣∣(BB∗)j . (d̃l.)
α
α

∣∣∣ (4.28)

the l-th component of a column-vector dB
. j = (dB

1j, ..., d
B
jn)

T for all l = 1, n and substitute

it in (4.27), we obtain

xij =

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣(A∗A) . i (e. l)
β
β

∣∣∣ dB

lj

∑
β∈Jr1, n

∣∣∣(A∗A) β
β

∣∣∣
∑

α∈Ir2,p

|(BB∗) α
α|

.

Since
n∑

l=1

e.ld
B

lj = dB
. j , then it follows (4.11).

Complimentary Contributor Copy



Cramer’s Rule for Generalized Inverse Solutions 115

(ii) If rankA = n and rankB = p, then by Corollary 2.3 A+ = (A∗A)−1
A∗ and

B+ = B∗ (BB∗)−1
. Therefore, we obtain

XLS = (A∗A)−1A∗DB∗ (BB∗)−1 =

=




x11 x12 . . . x1p

x21 x22 . . . x2p

. . . . . . . . . . . .

xn1 xn2 . . . xnp


 = 1

det(A∗A)




LA
11 LA

21 . . . LA
n1

LA
12 LA

22 . . . LA
n2

. . . . . . . . . . . .

LA
1n LA

2n . . . LA
nn


×

×




d̃11 d̃12 . . . d̃1m

d̃21 d̃22 . . . d̃2m

. . . . . . . . . . . .

d̃n1 d̃n2 . . . d̃nm




1
det(BB∗)




RB
11 RB

21 . . . RB
p1

RB
12 RB

22 . . . RB
p2

. . . . . . . . . . . .

RB
1p RB

2p . . . RB
pp


 ,

where d̃ij is ij-th entry of the matrix D̃, LA
ij is the ij-th cofactor of (A∗A) for all i, j = 1, n

and RB
i j is the ij-th cofactor of (BB∗) for all i, j = 1, p. This implies

xij =

n∑
k=1

LA

ki

(
p∑

s=1
d̃ ksR

B
js

)

det(A∗A) · det(BB∗)
, (4.29)

for all i = 1, n, j = 1, p. We obtain the sum in parentheses and denote it as follows

p∑

s=1

d̃k sR
B

j s = det(BB∗)j.

(
d̃k .

)
:= dB

k j,

where d̃k . is the k-th row-vector of D̃ for all k = 1, n. Suppose dB
. j :=

(
dB

1 j, . . . , d
B
nj

)T

is the column-vector for all j = 1, p. Reducing the sum
n∑

k=1

LA

kid
B

k j , we obtain an analog of

Cramer’s rule for (4.10) by (4.15).

Interchanging the order of summation in (4.29), we have

xij =

p∑
s=1

(
n∑

k=1

LA

kid̃ ks

)
RB

js

det(A∗A) · det(BB∗)
.

We obtain the sum in parentheses and denote it as follows

n∑

k=1

LA

kid̃k s = det(A∗A). i

(
d̃. s

)
=: dA

i s,

where d̃. s is the s-th column-vector of D̃ for all s = 1, p. Suppose dA
i . :=

(
dA

i 1, . . . , d
A
i p

)

is the row-vector for all i = 1, n. Reducing the sum
n∑

s=1
dA

i sR
B

js, we obtain another analog

of Cramer’s rule for the least squares solutions of (4.10) by (4.16).
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(iii) If A ∈ C
m×n
r1

, B ∈ C
p×q
r2 and r1 = n, r2 < p, then by Remark 2.12 and Theorem

2.9 the Moore-Penrose inverses A+ =
(
a+

ij

)
∈ Cn×m and B+ =

(
b+
ij

)
∈ Cq×p possess

the following determinantal representations respectively,

a+
ij =

det (A∗A) . i

(
a∗.j

)

det (A∗A)
,

b+
ij =

∑
α∈Ir2,p{j}

|(BB∗)j . (b
∗
i. )

α
α|

∑
α∈Ir2,p

|(BB∗) α
α|

. (4.30)

Since by Theorem 4.8 XLS = A+DB+, then an entry of XLS = (xij) is (4.24). Denote

by d̂.s the s-th column of A∗D =: D̂ = (d̂ij) ∈ Cn×q for all s = 1, q. It follows from∑
k

a∗. kdks = d̂. s that

m∑

k=1

a+
ikdks =

m∑

k=1

det (A∗A) . i (a∗.k)

det (A∗A)
· dks =

det (A∗A) . i

(
d̂. s

)

det (A∗A)
(4.31)

Substituting (4.31) and (4.30) in (4.24), and using (4.26) we have

xij =

q∑

s=1

det (A∗A) . i

(
d̂. s

)

det (A∗A)

∑
α∈Ir2,p{j}

|(BB∗)j . (b
∗
s. )

α
α|

∑
α∈Ir2,p

|(BB∗) α
α|

=

q∑
s=1

p∑
t=1

n∑
l=1

det (A∗A) . i (e. l)d̂lsb
∗
st

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

det (A∗A)
∑

α∈Ir2,p

|(BB∗) α
α|

=

p∑
t=1

n∑
l=1

det (A∗A) . i (e. l) d̃lt

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

det (A∗A)
∑

α∈Ir2,p

|(BB∗) α
α|

. (4.32)

If we substitute (4.28) in (4.32), then we get

xij =

n∑
l=1

det (A∗A) . i (e. l) dB

lj

det (A∗A)
∑

α∈Ir2,p

|(BB∗) α
α|

.

Since again
n∑

l=1

e.ld
B

lj = dB

. j , then it follows (4.19), where dB

. j is (4.13).

If we denote by

dA

it :=
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n∑

l=1

det (A∗A) . i

(
d̃. t

)
=

n∑

l=1

det (A∗A) . i (e. l) d̃lt

the t-th component of a row-vector dA

i . = (dA

i1, ..., d
A

ip) for all t = 1, p and substitute it in

(4.32), we obtain

xij =

p∑
t=1

dA
it

∑
α∈Ir2,p{j}

|(BB∗)j . (et.)
α
α|

det (A∗A)
∑

α∈Ir2,p

|(BB∗) α
α|

.

Since again
p∑

t=1
dA

it et. = dA

i . , then it follows (4.20), where dA

i . is (4.18).

(iiii) The proof is similar to the proof of (iii).

4.2. Cramer’s Rule of the Drazin Inverse Solutions of Some Matrix

Equations

Consider a matrix equation

AX = B, (4.33)

where A ∈ C
n×n with IndA = k, B ∈ C

n×m are given and X ∈ C
n×m is unknown.

Theorem 4.10. ([62], Theorem 1) If the range space R(B) ⊂ R(Ak), then the matrix

equation (4.33) with constrain R(X) ⊂ R(Ak) has a unique solution

X = ADB.

We denote AkB =: B̂ = (b̂ij) ∈ C
n×m.

Theorem 4.11. If rankAk+1 = rankAk = r ≤ n for A ∈ Cn×n, then for the Drazin

inverse solution X = ADB = (xij) ∈ C
n×m of (4.33) we have for all i = 1, n, j = 1, m,

xij =

∑
β∈Jr, n{i}

∣∣∣
(
Ak+1

. i

(
b̂.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣
. (4.34)

Proof. By Theorem 2.29 we can represent AD by (2.21). Therefore, we obtain for all

i = 1, n, j = 1, m,

xij =

n∑

s=1

aD
isbsj =

n∑

s=1

∑
β∈Jr, n{i}

∣∣∣
(
Ak+1

. i

(
a

(k)
.s

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣
· bsj =

∑
β∈Jr, n{i}

∑n
s=1

∣∣∣
(
Ak+1

. i

(
a

(k)
.s

))
β
β

∣∣∣ · bsj

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣
.
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Since
∑
s

a
(k)
.s bsj =




∑
s

a
(k)
1s bsj

∑
s

a
(k)
2s bsj

...∑
s

a
(k)
ns bsj




= b̂.j , then it follows (4.34).

Consider a matrix equation

XA = B, (4.35)

where A ∈ C
m×m with IndA = k, B ∈ C

n×m are given and X ∈ C
n×m is unknown.

Theorem 4.12. ([62], Theorem 2) If the null space N (B) ⊃ N (Ak), then the matrix

equation (4.35) with constrain N (X) ⊃ N (Ak) has a unique solution

X = BAD.

We denote BAk =: B̌ = (b̌ij) ∈ Cn×m.

Theorem 4.13. If rankAk+1 = rankAk = r ≤ m for A ∈ C
m×m, then for the Drazin

inverse solution X = BAD = (xij) ∈ Cn×m of (4.35), we have for all i = 1, n, j = 1, m,

xij =

∑
α∈Ir,m{j}

∣∣∣
(
Ak+1

j .

(
b̌i .

))
α
α

∣∣∣
∑

α∈Ir, m

|(Ak+1) α
α|

. (4.36)

Proof. By Theorem 2.29 we can represent AD by (2.20). Therefore, we obtain for all

i = 1, n, j = 1, m,

xij =

m∑

s=1

bisa
D
sj =

m∑

s=1

bis ·

∑
α∈Ir,m{j}

∣∣∣
(
Ak+1

j .

(
a

(k)
s .

))
α
α

∣∣∣
∑

α∈Ir, m

|(Ak+1) α
α|

=

∑m
s=1 bik

∑
α∈Ir,m{j}

∣∣∣
(
Ak+1

j .

(
a

(k)
s .

))
α
α

∣∣∣
∑

α∈Ir, m

|(Ak+1) α
α|

Since for all i = 1, n

∑

s

bisa
(k)
s . =

(∑
s

bisa
(k)
s1

∑
s

bisa
(k)
s2 · · ·

∑
s

bisa
(k)
sm

)
= b̌i.,

then it follows (4.36).

Consider a matrix equation

AXB = D, (4.37)

where A ∈ C
n×n with IndA = k1, B ∈ C

m×m with IndB = k2 and D ∈ C
n×m are

given, and X ∈ Cn×m is unknown.
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Theorem 4.14. ([62], Theorem 3) If R(D) ⊂ R(Ak1) and N (D) ⊃ N (Bk2), k =
max{k1, k2}, then the matrix equation (4.37) with constrain R(X) ⊂ R(Ak) and N (X) ⊃

N (Bk) has a unique solution

X = ADDBD.

We denote Ak1DBk2 =: D̃ = (d̃ij) ∈ C
n×m.

Theorem 4.15. If rankAk1+1 = rankAk1 = r1 ≤ n for A ∈ C
n×n, and rankBk2+1 =

rankBk2 = r2 ≤ m for B ∈ Cm×m, then for the Drazin inverse solution X =

ADDBD =: (xij) ∈ C
n×m of (4.37) we have

xij =

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
d B

. j

)
β
β

∣∣∣

∑
β∈Jr1,n

∣∣∣(Ak1+1)
β
β

∣∣∣
∑

α∈Ir2,m

∣∣(Bk2+1)
α
α

∣∣
, (4.38)

or

xij =

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j .

(
d A

i .

)
α
α

∣∣∣

∑
β∈Jr1,n

∣∣∣(Ak1+1)
β
β

∣∣∣
∑

α∈Ir2,m

∣∣(Bk2+1)
α
α

∣∣
, (4.39)

where

dB

. j =




∑

α∈Ir2,m{j}

∣∣∣Bk2+1
j.

(
d̃1.

)
α
α

∣∣∣, ...,
∑

α∈Ir2,m{j}

∣∣∣Bk2+1
j.

(
d̃n.

)
α
α

∣∣∣




T

, (4.40)

dA

i . =




∑

β∈Jr1,n{i}

∣∣∣Ak1+1
.i

(
d̃.1

)
β
β

∣∣∣, ...,
∑

α∈Ir1,n{i}

∣∣∣Ak1+1
.i

(
d̃. m

)
β
β

∣∣∣




are the column-vector and the row-vector. d̃i. and d̃.j are respectively the i-th row and the

j-th column of D̃ for all i = 1, n, j = 1, m.

Proof. By (2.21) and (2.20) the Drazin inverses AD =
(
aD

ij

)
∈ C

n×n and BD =
(
bD
ij

)
∈

Cm×m possess the following determinantal representations, respectively,

aD
ij =

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
a

(k1)
.j

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1)
β
β

∣∣∣
,

bD
ij =

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (b

(k2)
i. ) α

α

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

. (4.41)

Then an entry of the Drazin inverse solution X = ADDBD =: (xij) ∈ Cn×m is
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xij =
m∑

s=1

(
n∑

t=1

aD
it dts

)
bD
sj. (4.42)

Denote by d̂.s the s-th column of AkD =: D̂ = (d̂ij) ∈ Cn×m for all s = 1, m. It follows

from
∑
t

aD
. tdts = d̂. s that

n∑

t=1

aD
it dts =

n∑

t=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
a

(k1)
.t

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
· dts =

∑
β∈Jr1, n{i}

n∑
t=1

∣∣∣Ak1+1
. i

(
a

(k1)
.t

)
β
β

∣∣∣ · dts

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
=

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
d̂. s

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
(4.43)

Substituting (4.43) and (4.41) in (4.42), we obtain

xij =

m∑

s=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
d̂. s

)
β
β

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (b

(k2)
s. ) α

α

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

.

Suppose es. and e. s are respectively the unit row-vector and the unit column-vector whose

components are 0, except the sth components, which are 1. Since

d̂. s =
n∑

l=1

e. ld̂ls, b(k2)
s. =

m∑

t=1

b
(k2)
st et.,

m∑

s=1

d̂lsb
(k2)
st = d̃lt,

then we have

xij =

m∑
s=1

m∑
t=1

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i (e. l)

β
β

∣∣∣d̂lsb
(k2)
st

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (et.)

α
α

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

=

m∑
t=1

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i (e. l)

β
β

∣∣∣ d̃lt

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (et.)

α
α

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

. (4.44)

Denote by

dA

it :=

∑

β∈Jr1, n{i}

∣∣∣Ak1+1
. i

(
d̃. t

)
β
β

∣∣∣ =

n∑

l=1

∑

β∈Jr1, n{i}

∣∣∣Ak1+1
. i (e. l)

β
β

∣∣∣d̃lt
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the t-th component of a row-vector dA

i . = (dA

i1, ..., d
A

im) for all t = 1, m. Substituting it in

(4.44), we obtain

xij =

m∑
t=1

dA
it

∑
α∈Ir2,m{j}

∣∣∣Bk2+1
j . (et.)

α
α

∣∣∣

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

.

Since
m∑

t=1
dA

it et. = dA
i . , then it follows (4.39).

If we denote by

dB

lj :=

m∑

t=1

d̃lt

∑

α∈Ir2,m{j}

∣∣∣Bk2+1
j . (et.)

α
α

∣∣∣ =
∑

α∈Ir2,m{j}

∣∣∣Bk2+1
j . (d̃l.)

α
α

∣∣∣

the l-th component of a column-vector dB
. j = (dB

1j, ..., d
B
jn)

T for all l = 1, n and substitute

it in (4.44), we obtain

xij =

n∑
l=1

∑
β∈Jr1, n{i}

∣∣∣Ak1+1
. i (e. l)

β
β

∣∣∣ dB

lj

∑
β∈Jr1, n

∣∣∣(Ak1+1) β
β

∣∣∣
∑

α∈Ir2,m

|(Bk2+1) α
α|

.

Since
n∑

l=1

e.ld
B

lj = dB
. j , then it follows (4.38).

4.3. Examples

In this subsection, we give an example to illustrate results obtained in the section.

1. Let us consider the matrix equation

AXB = D, (4.45)

where

A =




1 i i

i −1 −1
0 1 0
−1 0 −i


 , B =

(
i 1 −i

−1 i 1

)
, D =




1 i 1

i 0 1
1 i 0
0 1 i


 .

Since rankA = 2 and rankB = 1, then we have the case (ii) of Theorem 4.9. We shall

find the least squares solution of (4.45) by (4.11). Then we have

A∗A =




3 2i 3i

−2i 3 2

−3i 2 3


 , BB∗ =

(
3 −3i

3i 3

)
, D̃ = A∗DB∗ =




1 −i

−i −1

−i −1


 ,
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and
∑

α∈I1,2

|(BB∗) α
α| = 3 + 3 = 6,

∑

β∈J2,3

∣∣∣(A∗A) β
β

∣∣∣ = det

(
3 2i

−2i 3

)
+ det

(
3 2

2 3

)
+ det

(
3 3i

−3i 3

)
= 10.

By (4.17), we can get

dB

.1 =




1

−i

−i


 , dB

.2 =



−i

−1
−1


 .

Since (A∗A) . 1

(
d B

.1

)
=




1 2i 3i

−i 3 2
−i 2 3


, then finally we obtain

x11 =

∑
β∈J2, 3{i}

∣∣∣(A∗A) . 1

(
d B

. 1

) β
β

∣∣∣

∑
β∈J2,3

∣∣∣(A∗A)β
β

∣∣∣
∑

α∈I1,2

|(BB∗)α
α|

=

det

(
1 2i

−i 3

)
+ det

(
1 3i

−i 3

)

60
= −

1

60
.

Similarly,

x12 =

det

(
−i 2i

−1 3

)
+ det

(
−i 3i

−1 3

)

60
= −

i

60
,

x21 =

det

(
3 1

−2i −i

)
+ det

(
−i 2
−i 3

)

60
= −

2i

60
,

x22 =

det

(
3 −i

−2i −1

)
+ det

(
−1 2
−1 3

)

60
= −

2

60
,

x31 =

det

(
3 1

−3i −i

)
+ det

(
3 −i

2 −i

)

60
= −

i

60
,

x32 =

det

(
3 −i

−3i −1

)
+ det

(
3 −1

2 −1

)

60
= −

1

60
.

2. Let us consider the matrix equation (4.45), where

A =




2 0 0
−i i i

−i −i −i


 , B =




1 −1 1
i −i i

−1 1 2


 , D =




1 i 1
i 0 1

1 i 0


 .

We shall find the Drazin inverse solution of (4.45) by (4.11). We obtain

A2 =




4 0 0

2− 2i 0 0
−2 − 2i 0 0


 , A3 =




8 0 0

4 − 4i 0 0
−4 − 4i 0 0


 ,
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B2 =




−i i 3 − i

1 −1 1 + 3i

−3 + i 3 − i 3 + i


 .

Since rankA = 2 and rankA2 = rankA2 = 1, then k1 = IndA = 2 and r1 = 1. Since

rankB = rankB2 = 2, then k2 = Ind B = 1 and r2 = 2. Then we have

D̃ = A2DB =




−4 4 8
−2 + 2i 2 − 2i 4 − 4i

2 + 2i −2 − 2i −4 − 4i


 ,

and
∑

β∈J1,3

∣∣∣
(
A3
) β

β

∣∣∣ = 8 + 0 + 0 = 8,

∑
α∈I2, 3

∣∣(B2
)

α
α

∣∣ =

det

(
−i i

1 −1

)
+ det

(
−1 1 + 3i

3 − i 3 + i

)
+ det

(
−i 3 − i

−3 + i 3 + i

)
=

0 + (−9− 9i) + (9 − 9i) = −18i.

By (4.13), we can get

dB

.1 =




12− 12i

−12i

−12


 , dB

.2 =



−12 + 12i

12i

12


 , dB

.3 =




8
−12 − 12i

−12 + 12i


 .

Since A3
.1

(
d B

. 1

)
=




12− 12i 0 0
−12i 0 0

−12 0 0


, then finally we obtain

x11 =

∑
β∈J1,3{1}

∣∣∣A3
. 1

(
d B

. 1

) β
β

∣∣∣

∑
β∈J1,3

∣∣∣(A3)ββ

∣∣∣
∑

α∈I2,3

|(B2)α
α|

=
12 − 12i

8 · (−18i)
=

1 + i

12
.

Similarly,

x12 =
−12 + 12i

8 · (−18i)
=

−1 − i

12
, x13 =

8

8 · (−18i)
=

i

18
,

x21 =
−12i

8 · (−18i)
=

1

12
, x22 =

12i

8 · (−18i)
= −

1

12
, x23 =

−12 − 12i

8 · (−18i)
=

1 − i

12
,

x31 =
12

8 · (−18i)
= −

i

12
, x32 =

−12

8 · (−18i)
=

i

12
. x33 =

−12 + 12i

8 · (−18i)
=

−1 − i

12
.

Then

X =




1+i
12

−1−i
12

i
18

1
12 − 1

12
1−i
12

− i
12

i
12

−1−i
12




is the Drazin inverse solution of (4.45).
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5. An Application of the Determinantal Representations of the

Drazin Inverse to Some Differential Matrix Equations

In this section we demonstrate an application of the determinantal representations (2.20)

and (2.21) of the Drazin inverse to solutions of the following differential matrix equations,

X′ + AX = B and X′ + XA = B, where the matrix A is singular.

Consider the matrix differential equation

X′ + AX = B (5.1)

where A ∈ C
n×n, B ∈ C

n×n are given, X ∈ C
n×n is unknown. It’s well-known that the

general solution of (5.1) is found to be

X(t) = exp−At

(∫
expAt dt

)
B

If A is invertible, then ∫
expAt dt = A−1 expAt +G,

where G is an arbitrary n× n matrix. If A is singular, then the following theorem gives an

answer.

Theorem 5.1. ([63], Theorem 1) If A has index k, then
∫

expAt dt = AD expAt +(I −AAD)t

[
I +

A

2
t +

A2

3!
t2 + ... +

Ak−1

k!
tk−1

]
+ G.

Using Theorem 5.1 and the power series expansion of exp−At, we get an explicit form

for a general solution of (5.1)

X(t) ={
AD + (I −AAD)t

(
I − A

2 t + A
2

3! t2 − ...(−1)k−1 A
k−1

k! tk−1
)

+ G
}

B.

If we put G = 0, then we obtain the following partial solution of (5.1),

X(t) = ADB + (B−ADAB)t− 1
2(AB−ADA2B)t2 + ...

(−1)k−1

k! (Ak−1B− ADAkB)tk.
(5.2)

Denote AlB =: B̂(l) = (̂b
(l)
ij ) ∈ C

n×n for all l = 1, 2k.

Theorem 5.2. The partial solution (5.2), X(t) = (xij), possess the following determinantal

representation,

xij =

P
β∈Jr, n{i}

˛̨
˛
“
A

k+1
. i

“
bb(k)

.j

””
β
β

˛̨
˛

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛

+


bij −

P
β∈Jr, n{i}

˛̨
˛
“
A

k+1
. i

“
bb(k+1)

.j

””
β
β

˛̨
˛

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛


 t

−1
2


b̂

(1)
ij −

P
β∈Jr, n{i}

˛̨
˛
“
A

k+1
. i

“
bb(k+2)

.j

””
β
β

˛̨
˛

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛


 t2 + ...

(−1)k

k!


b̂

(k−1)
ij −

P
β∈Jr, n{i}

˛̨
˛
“
A

k+1
. i

“
bb(2k)

.j

””
β
β

˛̨
˛

P
β∈Jr, n

˛̨
˛(Ak+1) β

β

˛̨
˛


 tk

(5.3)

Complimentary Contributor Copy



Cramer’s Rule for Generalized Inverse Solutions 125

for all i, j = 1, n.

Proof. Using the determinantal representation of the identity ADA (2.27), we obtain the

following determinantal representation of the matrix ADAmB := (yij),

yij =

n∑

s=1

pis

n∑

t=1

a
(m−1)
st btj =

∑

β∈Jr,n{i}

n∑
s=1

∣∣∣∣
(
Ak+1

. i

(
a.s

(k+1)
))β

β

∣∣∣∣ ·
n∑

t=1
a

(m−1)
st btj

∑
β∈Jr,n

∣∣∣(Ak+1)
β
β

∣∣∣
=

∑

β∈Jr,n{i}

n∑
t=1

∣∣∣∣
(
Ak+1

. i

(
a.t

(k+m)
))β

β

∣∣∣∣ · btj

∑
β∈Jr,n

∣∣∣(Ak+1)
β
β

∣∣∣
=

∑
β∈Jr, n{i}

∣∣∣
(
Ak+1

. i

(
b̂

(k+m)
.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(Ak+1) β
β

∣∣∣

for all i, j = 1, n and m = 1, k. From this and the determinantal representation of the

Drazin inverse solution (4.34) and the identity (2.27) it follows (5.3).

Corollary 5.3. If IndA = 1, then the partial solution of (5.1),

X(t) = (xij) = AgB + (B− AgAB)t,

possess the following determinantal representation

xij =

∑
β∈Jr, n{i}

∣∣∣
(
A2

. i

(
b̂

(1)
.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A2) β
β

∣∣∣
+


bij −

∑
β∈Jr, n{i}

∣∣∣
(
A2

. i

(
b̂

(2)
.j

))
β
β

∣∣∣

∑
β∈Jr, n

∣∣∣(A2) β
β

∣∣∣


 t. (5.4)

for all i, j = 1, n.

Consider the matrix differential equation

X′ + XA = B (5.5)

where A ∈ C
n×n, B ∈ C

n×n are given, X ∈ C
n×n is unknown. The general solution of

(5.5) is found to be

X(t) = B exp−At

(∫
expAt dt

)

If A is singular, then an explicit form for a general solution of (5.5) is

X(t) =

B
{
AD + (I −AAD)t

(
I − A

2 t + A
2

3! t2 + ...(−1)k−1 A
k−1

k! tk−1
)

+ G
}

.

If we put G = 0, then we obtain the following partial solution of (5.5),

X(t) = BAD + (B−BAAD)t − 1
2(BA −BA2AD)t2 + ...

(−1)k−1

k! (BAk−1 − BAkAD)tk.
(5.6)

Denote BAl =: B̌(l) = (b̌
(l)
ij ) ∈ Cn×n for all l = 1, 2k. Using the determinantal represen-

tation of the Drazin inverse solution (4.36), the group inverse (2.25) and the identity (2.26)

we evidently obtain the following theorem.
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Theorem 5.4. The partial solution (5.6), X(t) = (xij), possess the following determinantal

representation,

xij =

P
α∈Ir,n{j}

˛̨
˛
“
A

k+1
j .

“
b̌

(k)
. i

””
α
α

˛̨
˛

P
α∈Ir,n

|(Ak+1) α
α|

+


bij −

P
α∈Ir,n{j}

˛̨
˛
“
A

k+1
j .

“
b̌

(k+1)
i .

””
α
α

˛̨
˛

P
α∈Ir,n

|(Ak+1) α
α|


 t

−1
2


b̌

(1)
ij −

P
α∈Ir,n{j}

˛̨
˛
“
A

k+1
j .

“
b̌

(k+2)
i .

””
α
α

˛̨
˛

P
α∈Ir,n

|(Ak+1) α
α|


 t2 + ...

(−1)k

k!


b̌

(k−1)
ij −

P
α∈Ir,n{j}

˛̨
˛
“
A

k+1
j .

“
b̌

(2k)
i .

””
α
α

˛̨
˛

P
α∈Ir,n

|(Ak+1) α
α|


 tk

for all i, j = 1, n.

Corollary 5.5. If IndA = 1, then the partial solution of (5.5),

X(t) = (xij) = BAg + (B− BAAg)t,

possess the following determinantal representation

xij =

∑
α∈Ir,n{j}

∣∣∣
(
A2

j .

(
b̂

(1)
i .

))
α
α

∣∣∣
∑

α∈Ir,n

|(A2) α
α|

+


bij −

∑
α∈Ir,n{j}

∣∣∣
(
A2

j .

(
b̂

(2)
i .

))
α
α

∣∣∣
∑

α∈Ir,n

|(A2) α
α|


 t.

for all i, j = 1, n.

5.1. Example

1. Let us consider the differential matrix equation

X′ + AX = B, (5.7)

where

A =




1 −1 1

i −i i

−1 1 2


 , B =




1 i 1

i 0 1
1 i 0


 .

Since rankA = rankA2 = 2, then k = IndA = 1 and r = 2. The matrix A is the group

inverse. We shall find the partial solution of (5.7) by (5.4). We have

A2 =




−i i 3 − i

1 −1 1 + 3i

−3 + i 3− i 3 + i


 , B̂(1) = AB =




2 − i 2i 0
1 + 2i −2 0

1 + i i 0


 ,

B̂(2) = A2B =




2− 2i 2 + 3i 0

2 + 2i −3 + 2i 0
1 + 5i −2 0


 .
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and ∑
α∈J2, 3

∣∣∣
(
A2
) β

β

∣∣∣ =

det

(
−i i

1 −1

)
+ det

(
−1 1 + 3i

3 − i 3 + i

)
+ det

(
−i 3 − i

−3 + i 3 + i

)
=

0 + (−9− 9i) + (9 − 9i) = −18i.

Since
(
A2
)

. 1

(
b̂

(1)
.1

)
=




2 − i i 3 − i

1 + 2i −1 1 + 3i

1 + i 3 − i 3 + i


 and

(
A2
)

. 1

(
b̂

(2)
.1

)
=




2 − 2i i 3 − i

2 + 2i −1 1 + 3i

1 + 5i 3 − i 3 + i


 ,

then finally we obtain

x11 =

P
β∈J2,3{1}

˛̨
˛
“
A

2
. 1

“
bb(1)

.1

””
β
β

˛̨
˛

P
β∈J2,3

˛̨
˛(A2)

β

β

˛̨
˛

+


b11 −

P
β∈J2,3{1}

˛̨
˛
“
A

2
. 1

“
bb(2)

.1

””
β
β

˛̨
˛

P
β∈J2,3

˛̨
˛(A2)

β

β

˛̨
˛


 t =

3−3i
−18i +

(
1 − −18i

−18i

)
t = 1+i

6 .

Similarly,

x12 =
−3 + 3i

−18i
+

(
i −

9 + 9i

−18i

)
t =

−1 − i

6
+

1 + i

2
t, x13 = 0 + (1 − 0) t = t,

x21 =
3 + 3i

−18i
+

(
i −

−18

−18i

)
t =

−1 + i

6
,

x22 =
−3 − 3i

−18i
+

(
0−

−9 + 9i

−18i

)
t =

1 − i

6
+

1 + i

2
t, x23 = 0 + (1 − 0) t = t,

x31 =
−12i

−18i
+

(
1−

−18i

−18i

)
t =

2

3
,

x32 =
9 + 3i

−18i
+

(
i −

−18

−18i

)
t =

−1 + 3i

6
, x33 = 0 + (0 − 0) t = 0.

Then

X =
1

6




1 + i −1 − i + (3 + 3i)t t

−1 + i 1− i + (3 + 3i)t t

4 −1 + 3i 0




is the partial solution of (5.7) .
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6. Conclusion

From student years it is well known that Cramer’s rule may only be used when the

system is square and the coefficient matrix is invertible. In this chapter we are consid-

ered various cases of Cramer’s rule for generalized inverse solutions of systems of linear

equations and matrix equations when the coefficient matrix is not square or non-invertible.

The results of this chapter have practical and theoretical importance because they give an

explicit representation of an individual component of solutions independently of all other

components. Also the results of this chapter can be extended to matrices over rings (and

now this is done in the quaternion skew field), to polynomial matrices, etc.
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FEEDBACK ACTIONS ON LINEAR SYSTEMS

OVER VON NEUMANN REGULAR RINGS
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Campus de Vegazana, León, Spain

Abstract

Many physical systems in science and engineering can be described at time t in terms

of an n-dimensional state vector x(t) and an m-dimensional input vector u(t), gov-

erned by an evolution equation of the form x′(t) = A · x(t) + B · u(t), if the time

is continuous, or x(t + 1) = A · x(t) + B · u(t) in the discrete case. Thus, the sys-

tem is completely described by the pair of matrices (A, B) of sizes n × n and n × m
respectively.

In two instances feedback is used to modify the structure of a given system (A, B):
first, A can be replaced by A + BF , with some characteristic polynomial that ensures

stability of the new system (A + BF, B); and second, combining changes of bases

with a feedback action A 7→ A+ BF one obtains an equivalent system with a simpler

structure.

Given a system (A, B), let R(A, B) denote the set of states reachable at finite time

when starting with initial condition x(0) = 0 and varying u(t), i.e., R(A, B) is the

right image of the matrix [B|AB|A2B| · · · ]. Also, let Pols(A, B) denote the set of

characteristic polynomials of all possible matrices A + BF , as F varies.

Classically, (A, B) have their entries in the field of real or complex numbers, but

the concept of discrete-time system is generalized to matrix pairs with coefficients in

an arbitrary commutative ring R. Therefore, techniques from Linear Algebra over

commutative rings are needed.

In this chapter, the following problems are studied and solved when R is a com-

mutative von Neumann regular ring:

• A canonical form is obtained for the feedback equivalence of systems (combi-

nation of basis changes with a feedback action).

∗E-mail address: asaes@unileon.es
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• Given a system (A, B), it is proved that there exist a matrix F and a vector u such

that the single-input system (A+BF, Bu) has the same reachable states and the

same assignable polynomials as the original system, i.e., R(A + BF, Bu) =
R(A, B) and Pols(A + BF, Bu) = Pols(A, B).

Keywords: Systems over commutative rings, commutative von Neumann regular ring,

feedback classification, polynomials assignable by state feedback

AMS Subject Classification: 93B25, 93B52, 13F99

1. Introduction

The theory of systems over rings had its origins in the 1970s, in order to cover with

situations where it is too restrictive to consider systems with real or complex coefficients.

The motivation for this approach is explained in [1, 2, 3], and the necessary Linear Algebra

over commutative rings is nicely covered in [4].

Let R be a commutative ring with 1. An m-input, n-dimensional linear control system

over R, or shortly a system of size (n, m) over R, is a pair of matrices (A, B) of sizes n×n
and n×m, respectively, with coefficients in R. The following control process is associated

with (A, B):

x(t + 1) = A · x(t) + B · u(t),

where the vector x(t) ∈ Rn is the state of the system at time t, and u(t) ∈ Rm is the

input at time t. If we put the initial condition x(0) = 0 and choose arbitrary input vectors

u(1), u(2), . . ., then the following states are obtained:

x(1) = A · x(0) + B · u(1) = B · u(1)

x(2) = A · x(1) + B · u(2) = AB · u(1) + B · u(2)

x(3) = A · x(2) + B · u(3) = A2B · u(1) + AB · u(2) + B · u(3)

· · ·

This means that the set of states which are reachable at some finite time, when starting

from the origin x(0) = 0 and choosing appropriate inputs (u(t))t≥1, is a submodule of

Rn which can be defined as the image of the infinite matrix [B|AB|A2B| · · · ]. Note that,

by Cayley-Hamilton’s theorem, An and higher powers of A are linear combinations of

A, A2, . . . , An−1 and I , the n×n identity matrix, therefore it suffices to consider the image

of the so called reachability matrix A∗B := [B|AB|A2B| · · · |An−1B].

This module of reachable states has different notations in the literature, among others:

Reach(A, B) [3], N
(A,B)
n [5, 6], <A|B> [7], im(A∗B) [8] or R(A, B) [9]. The cho-

sen notation for this chapter will be R(A, B), and in a few places im(A∗B). With these

notations, the system (A, B) is called reachable if R(A, B) = Rn.

In Control Theory, if (A, B) have real coefficients, then the (complex) eigenvalues of

A (which are the poles of the transfer function) are important to guarantee the stability

of the system. Such stability depends on the positions of the poles in the complex plane

(see [3]). Therefore, it is customary to replace the “open-loop” system by a “closed-loop”

system, that is, a system in which the state is “fed back” as an input. The input is taken
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as u(t) = w(t) + Fx(t), where w(t) can be interpreted as an uncontrolled input (e.g., a

disturbance or perturbation) and Fx(t) is a new term that depends linearly on the state.

Then, the equation x(t+1) = Ax(t)+B(w(t)+Fx(t)) is that of a new system with state

x(t), input w(t) and matrices (A + BF, B). Within this context, a matrix F is looked for,

such that A + BF has some prescribed characteristic polynomial.

When applying state feedback to a given system (A, B), it is interesting to describe

exactly which polynomials arise as characteristic polynomials of A+BF , for some F . With

this in mind, in [10, 11] the notation Pols(A, B) is used to refer to the set of polynomials

assignable by feedback to the system (A, B), and consists of all characteristic polynomials

χ(A + BF ) = det(xI −A− BF ), as F ranges over all m× n matrices with entries in R.

In order to make this introduction self-contained and historically complete, we recall

some wellknown properties of systems over rings (see e.g., [1, 2]). The system (A, B) is

called (i) pole assignable if given arbitrary scalars a1, . . . , an in R there exists a matrix F

such that χ(A + BF ) = (x − a1) · · · (x − an); (ii) coefficient assignable if for any monic

polynomial f(x) of degree n there exists a matrix F such that χ(A + BF ) = f(x); and

(iii) feedback cyclizable if there exist a matrix F and a vector u such that (A + BF, Bu)
is reachable. It is known that feedback cyclizability ⇒ coefficient assignability ⇒ pole

assignability⇒ reachability, and that all properties are equivalent when R is a field.

Rings for which some of the converse implications hold are denoted as follows: R is a

PA ring (resp. CA ring) (resp. FC ring) if reachable systems over R are pole assignable

(resp. coefficient assignable) (resp. feedback cyclizable). Then, it is immediate that FC ⇒
CA ⇒ PA, and it can be seen that the implications are strict.

Why is the feedback cyclization property so important? Suppose that we are given a

system (A, B) of size (n, m), and we want to assign to it a certain polynomial f(x). This

means that we have to find an m × n matrix K such that χ(A + BK) = f(x), i.e., we

are faced with a problem with mn degrees of freedom. But, if we are lucky to find F, u

such that (A+BF, Bu) is reachable, then, taking into account that for single-input systems

reachability implies coefficient assignability [1, Theorem 3.2], there exists certainly a 1×n

matrix K such that χ(A + BF + BuK) = f(x), i.e., we have reduced our problem to one

with n degrees of freedom.

Various attempts have been made to extend the properties PA, CA, FC to non reach-

able systems. In [8, 12, 13], the notion of residual rank is used: a system (A, B) over

R has residual rank r, and we write res.rk(A, B) = r, if r is the greatest integer such

that the ideal of R generated by the r × r minors of the reachability matrix A∗B is the

whole ring R. Reachable systems correspond to the case of maximum possible residual

rank: res.rk(A, B) = n. Now, consider a system (A, B) over R with res.rk(A, B) = r.

Then, (A, B) is said to be (i) pole assignable if, given arbitrary scalars a1, . . . , ar, there

exists a matrix F such that χ(A + BF ) is a multiple of (x − a1) · · · (x − ar); (ii) coeffi-

cient assignable if, given any monic polynomial f(x) of degree r, there exists F such that

χ(A + BF ) is a multiple of f(x); and (iii) feedback cyclizable if there exist F, u such that

res.rk(A + BF, Bu) = res.rk(A, B).

With these notations, R is called a PS ring (resp. strong CA ring) (resp. strong FC

ring) if any system over R is pole assignable (resp. coefficient assignable) (resp. feedback

cyclizable). As one would expect, the relation among the strong forms of PA, CA, FC

Complimentary Contributor Copy



136 Andrés Sáez-Schwedt

and the usual forms is the following:

strong FC ⇒ strong CA ⇒ PS
⇓ ⇓ ⇓

FC ⇒ CA ⇒ PA

Although these strong versions of PA, CA and FC allow to study non reachable systems,

they are only interesting for systems (A, B) with residual rank at least one, which is equiv-

alent to requiring that the ideal generated by all the entries of B is the whole ring R. If

this is not the case, then (A, B) trivially satisfies the feedback cyclization property, and

hence all the other properties: indeed, if res.rk(A, B) = 0, then for any F, u one has

res.rk(A + BF, Bu) = 0 (the ideal generated by the entries of the vector Bu is contained

in the ideal generated by the entries of B, and thus is not R).

A further step was made in [6, 11], allowing to study arbitrary non reachable systems.

Observe that for any matrix F ∈ Rm×n and any vector u ∈ Rm, it is immediate that

R(A + BF, Bu) ⊆ R(A, B) (see e.g., [6] or [3]) and Pols(A + BF, Bu) ⊆ Pols(A, B)
(because a matrix of the form (A + BF ) + (Bu)F ′ can always be written as A + BF ′′ ,

with F ′′ = F + uF ′). An interesting question is: when do the reverse inclusions hold? Or

equivalently, when are the following problems solvable?

(Reach) : Find F, u such that R(A + BF, Bu) = R(A, B)

(Pols) : Find F, u such that Pols(A + BF, Bu) = Pols(A, B)

Definition 1. (Properties Reach and Pols) A ring R is said to satisfy Reach (resp. Pols)

if all systems over R satisfy Reach (resp. Pols).

It is clear that Reach implies the strong FC property: if R(A+ BF, Bu) = R(A, B),

then the matrices A∗B and (A + BF )∗(Bu) have the same image, hence the same ideals

of minors, and so res.rk(A + BF, Bu) = res.rk(A, B). In [6, Theorem 4], it is proved

that a ring R satisfies Reach (called in that reference Problem (1)) if and only if R is von

Neumann regular, i.e., for any a in R there exists x such that a2x = a. Also, the condition

Reach is strictly stronger than strong FC, as can be seen in [8, Proposition 3.4], where

various examples of strong FC rings are given, which are not von Neumann regular. Then,

in [11, Theorem 2], it is proved that von Neumann regular rings satisfy Pols, and in fact,

both problems Reach and Pols are solved simultaneously: there exist a matrix F and a

vector u such that R(A + BF, Bu) = R(A, B) and Pols(A + BF, Bu) = Pols(A, B).

This means that starting from an arbitrary multi-input system (A, B), we obtain a

single-input system (A + BF, Bu) which has the same module of reachable states and

the same set of assignable polynomials as the original system (A, B), a reduction of great

importance in systems theory.

One of the main tools in proving the previous results is the use of feedback equivalence.

Two systems (A, B) and (A′, B′) of size (n, m) over R are feedback equivalent if there

exist invertible matrices P, Q and a feedback matrix K such that A′ = PAP−1 + PBK
and B′ = PBQ. Any feedback transformation is a combination of the following three

types of row and column operations: (i) (A, B) 7→ (PAP−1, PB), corresponding to a

change of basis in Rn, (ii) (A, B) 7→ (A, BQ), which applies column operations on B, and
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(iii) (A, B) 7→ (A + BK, B), a closed loop as explained before, which can be interpreted

as adding to each column of A a linear combination of columns of B.

Note that equivalence and similarity of matrices over R are particular cases of feedback

equivalence. Indeed, if (A, B) and (A′, B′) are feedback equivalent, then B, B′ are equiv-

alent (B′ = PBQ, with P, Q invertible), while the equivalence of (A, 0), (A′, 0) implies

similarity of A, A′ (i.e., A′ = PAP−1). Therefore, a canonical form under feedback equiv-

alence only makes sense if a canonical form is known for equivalence (i.e., the ring is an

elementary divisor ring and a certain Smith form is known), and also a canonical form for

similarity of matrices is known.

The effect of feedback equivalence on the module of reachable states is the following:

R(A′, B′) = φP (R(A, B)) [5, Lemma 2.1], where φP is the isomorphism of Rn with

matrix P in the standard bases. On the other side, feedback has no effect on the set of

assignable polynomials: Pols(A′, B′) = Pols(A, B), as can be easily proved, see e.g.,

[10].

In this chapter, after recalling in Section 2 what is known for systems over fields, Sec-

tion 3 is devoted to explaining how to derive a feedback canonical form for the feedback

equivalence of systems over a von Neumann regular ring, and in Section 4 this canonical

form is of fundamental importance to prove the simultaneous solution of Reach and Pols.

2. Preliminaries: What is Known for Fields?

For a reachable system (A, B) of size (n, m) over a field k, our problems Reach and

Pols are trivially solved by the wellknown Heymann’s Lemma [14]: there exist a matrix

F and a vector u of sizes m × n and m × u respectively such that the single-input system

(A + BF, Bu) is reachable. This means that R(A, B) and R(A+ BF, Bu) are both equal

to kn, therefore problem Reach is solved. But reachable systems over fields are always

coefficient assignable [1], from which it follows that Pols(A, B) and Pols(A + BF, Bu)
are both equal to the set of all monic polynomials of degree n over k, hence the condition

Pols is solved, by means of the same matrix F and vector u which solve Reach.
Also, a canonical form is known for reachable systems over a field k, see [15] or [5].

For any positive integer i, let the i × i matrix Ai denote one of the companion matrices of
the polynomial xi (with zeroes on the main diagonal, and ones immediately below), and
let bi be the first basic vector of ki. Then, given a reachable system (A, B) of size (n, m),
there exist positive integers k1 ≥ · · · ≥ ks, with sum n, such that (A, B) is feedback

equivalent to a canonical form (Â, B̂), such that Â is formed with the blocks Ak1
, . . . , Aks ,

and B̂ has blocks bk1
, . . . , bks, completed with zero columns. The elements ki are called

the Kronocker indices. For example, the canonical form associated to a reachable system
of size (7, 4) with indices 4, 2, 1 is given by:

Â =




0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0 0 0




, B̂ =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 1 0 0
0 0 0 0

0 0 1 0




.
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For non reachable systems over fields, the situation is solved via the so called Kalman

decomposition [3, Lemma 3.3.3]. Concretely, let (A, B) be a system of size (n, m) over a

field k. Then, there exists an invertible matrix P such that

PAP−1 =

[
A1 A2

0 A3

]
, PB =

[
B1

0

]
, (1)

where A1 is r × r, B1 is r × m, and the m-input r-dimensional system (A1, B1) is

reachable. Consequently, one can apply Heymann’s Lemma to (A1, B1), taking F1 and

u such that (A1 + B1F1, B1u) is reachable. Now, defining F = [F1, 0], one can see that

R(A + BF, Bu) = R(A, B) (this is easy) and Pols(A + BF, Bu) = Pols(A, B) (for

this, one needs the Pole-Shifting Theorem [3, Theorem 13], which states that the polyno-

mials assignable to (A, B) are exactly all monic r-degree polynomials, multiplied by the

fixed polynomial χ(A3)). Although not explicitely stated, is is clear from the results of [3,

Chapter 5] that Pols(A, B) = Pols(A1, B1) · χ(A3), and also Pols(A + BF, Bu) =
Pols(A1 + B1F1, B1u) · χ(A3), and in fact multiplication by χ(A3) induces a bijec-

tion between the corresponding sets Pols(.), this will be explained in detail in Lemma

5. From this and the fact that Pols(A1 + B1F1, B1u) = Pols(A1, B1), it follows that

Pols(A + BF, Bu) = Pols(A, B), and so Pols has been solved, by means of the same

F, u which solve Reach. In this situation, a canonical form for (A, B) is obtained com-

bining the Brunovsky canonical form of the reachable system (A1, B1), together with a

canonical form for A3 under similarity.

If R is a finite product of fields, then it is a regular ring. This is the case, for example,

if R = Z/(dZ), where d is a squarefree integer, i.e., not divisible by the square of a prime.

In this case, the simultaneous solution of Reach and Pols for systems over fields can be

immediately extended to a finite product of fields, without needing any additional properties

of regular rings.

The key fact when working with regular rings will be that, even if there are infinitely

many maximal ideales (i.e., R has infinitely many residue fields), any system can be split

into a finite familily of systems, each of which behaves like a system over a field. Con-

cretely, each of these systems will satisfy a Kalman-type decomposition, with the reachable

part in Brunovsky canonical form.

3. Derivation of a Canonical Form

In this section, we will outline the construction made in [9, Theorem 5] to obtain a

canonical form for the feedback equivalence of systems over von Neumann regular rings.

Let R be a von Neumann regular ring. Many important properties of this class of rings can

be found in [4, 16, 17, 18], among others: R has Krull dimension zero (all prime ideals

are maximal) and no nonzero nilpotents, or any finitely generated ideal is principal and

generated by an idempotent.

Examples of commutative von Neumann regular rings are fields, sub-rings of arbitrary

products of fields, and typically many rings of continuous functions (e.g., function rings

over P-spaces, see [19, Theorem 14.29]), and semi-simple finite rings. The importance of

regular rings in systems theory is discussed, among other references, in [6, 9, 20].
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Let us see how we can take profit of certain conditions of R. The first property of

interest is that R is an elementary divisor ring [16, Theorem 11]: given a matrix B, there

exist invertible matrices P, Q such that

PBQ =




d1

. . .

dr

0

0 0




with zero blocks of appropriate sizes and diagonal elements each one dividing the next

one: d1|d2| · · · |dr. Moreover, since each element of a regular ring is the product of a unit

with an idempotent [16, Lemma 10], after multiplying P or Q with appropriate units one

can assume that all di’s are idempotent. This means that if the system (A, B) is replaced

by the feedback equivalent system (PAP−1, PBQ), the second matrix of the system has

the above diagonal form, and so one can assume from the beginning that -up to feedback

equivalence- B itself has this form.

For example, take the ring R = Z/210Z, a regular ring because 210 = 2 · 3 · 5 · 7
is squarefree, and consider the divisibility conditions 2|2 · 3|2 · 3 · 5. The corresponding

idempotents are respectively {d1 = 106, d2 = 36, d3 = 120} (for instance, 2 = 107 · 106,

with 107 a unit and 106 idempotent, 2 · 3 = 41 · 36, etc.). So, a typical matrix B could be:

B =




106 0 0
0 36 0
0 0 120

0 0 0




The second property which we will use is the following simple trick with idempotents. If

d is an idempotent of the ring R (for this R does not need to be regular), one has a direct

sum decomposition R = dR ⊕ (1 − d)R. Note that 1 − d is also idempotent ((1 − d)2 =
1 − 2d + d2 = 1 − 2d + d = 1 − d) and the idempotents {d, 1 − d} are orthogonal to

each other: d(1 − d) = d − d2 = 0. Given any element a of R, it is easy to add to a some

multiple of d and obtain an element orthogonal to d: indeed, the identity a = da+(1−d)a
means that a − ad is a multiple of 1 − d, and thus is orthogonal to d.

Now, observe that the feedback operation which consists of replacing A by A+BF can

be interpreted as adding multiples of columns of B to the columns of A. If aij denotes the

element of A in position (i, j), it is clear that aij −diaij is orthogonal to di, and because of

the divisibility conditions, this also implies orthogonality with all di′ for i′ > i. Since for all

i, j the replacement aij 7→ aij − diaij can be achieved with a suitable feedback operation

of the form A 7→ A+BK, the final result is that we can assume that di is orthogonal to the

i-th row of A, and to all the preceeding rows.

At this point, we can assume that B is diagonal with diagonal elements

{di}, all idempotent and each one dividing the following one, and that di is

orthogonal to the rows 1, . . . , i of A.
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A typical system in this form could be for example:

A =




105 105 0 105
35 0 105 140
14 112 7 126

173 191 162 147


 , B =




106 0 0
0 36 0
0 0 120

0 0 0




The next trick is a standard argument from Commutative Algebra. Starting from a

finite number of idempotent elements d1, . . . , dr, one can derive a finite family of pairwise

orthogonal idempotens and with sum 1. The construction is as follows:




e0 = 1− d1

e1 = d1(1− d2)
...

er−1 = dr−1(1 − dr)

er = dr

In this case, one has R = e1R ⊕ · · ·⊕ erR, a direct sum of rings (each eiR is commutative

and with unit element ei), and the feedback classification of (A, B) over R is reduced to

the classification of each (eiA, eiB) over eiR.

Applying this procedure to {d1 = 106, d2 = 36, d3 = 120} yields the orthogonal

family {e0 = 105, e1 = 70, e2 = 126, e3 = 120}, with sum 1. Accordingly, one has to

consider these four systems:

105 · A =




105 105 0 105
105 0 105 0

0 0 105 0
105 105 0 105


 , 105 ·B =




0 0 0
0 0 0

0 0 0
0 0 0




70 · A =




0 0 0 0
140 0 0 140
140 70 70 0

140 140 0 0


 , 70 · B =




70 0 0
0 0 0
0 0 0

0 0 0




126 ·A =




0 0 0 0

0 0 0 0
84 42 42 126

168 126 42 42


 , 126 · B =




126 0 0

0 126 0
0 0 0

0 0 0




120 ·A =




0 0 0 0
0 0 0 0

0 0 0 0
180 30 120 0


 , 120 · B =




120 0 0
0 120 0

0 0 120
0 0 0




Observe the identity blocks in the right matrices, and the zero blocks in the left. The first

system (e0A, e0B) has second matrix zero, so its feedback classification is equivalent to the

classification of e0A by similarity. All other systems have the following block structure

(eiA, eiB) =

([
0 0

eiBi eiAi

]
,

[
eiI 0

0 0

])
,
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where eiI is an identity matrix in the ring eiR with identity ei. In this situation, since the

system (eiAi, eiBi) has size smaller than (A, B), one can repeat the procedure recursively.

Suppose we are given a system of this form:

A =

[
0 0

B1 A1

]
, B =

[
I 0

0 0

]

If a canonical form is known for the smaller system (A1, B1), then it can be “copied and

pasted” into (A, B). Indeed, let P1, Q1, K1 be matrices which transform (A1, B1) into

a certain canonical form (Â1, B̂1) = (P1A1P
−1
1 + P1B1K1, P1B1Q1). Considering the

matrices

P =

[
Q−1

1 −Q−1
1 K1P1

0 P1

]
, P−1 =

[
Q1 K1

0 P−1
1

]
, Q =

[
Q1 0
0 I

]
,

after operating it can be seen that

PAP−1 =




∗ ∗

P1B1Q1︸ ︷︷ ︸
B̂1

P1A1P
−1
1 + P1B1K1︸ ︷︷ ︸

Â1


 , PBQ =

[
I 0

0 0

]
.

A further feedback replaces the ∗’s with zeroes. Finally, this type of recursive “copypasting”

of canonical forms allows to prove the following result.

Theorem 2. Let Σ = (A, B) be a system of size (n, m) over a regular ring R. Then, there

exists a finite family of idempotents e1, . . . , ek, pairwise orthogonal and with sum 1, such

that for each i, the system (eiA, eiB) over the regular ring eiR is feedback equivalent to a

system with the block form:

(Âi, B̂i) =

([
eiAi 0

0 eiCi

]
,

[
eiBi

0

])
,

where the pair (eiAi, eiBi) is reachable and in Brunovsky canonical form over eiR.

Proof. This is proved in detail in [9, Theorem 5], following the techniques previously

outlined. �

4. Simultaneous Solution to Reach and Pols

This section will be devoted to proving [11, Theorem 2], which we state here.

Theorem 3. Let (A, B) be a system of size (n, m) over a commutative von Neumann reg-

ular R. Then, the following conditions hold:

(P1) Given a matrix F and a vector u, the system (A, B) satisfies Reach via F, u if and

only if (A, B) satisfies Pols via the same F, u.

(P2) There exist a matrix F and a vector u which solve problems Reach and Pols simul-

taneously for (A, B).
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Proof. Let e1, . . . , ek be idempotents with the conditions of the last theorem. To prove the

theorem, the following steps will be followed:

Step 1: prove that all reachable systems (eiAi, eiBi) satisfy (P1) and (P2).

Step 2: show that (P1) and (P2) are translated from the small size system (eiAi, eiBi)

to the large size system (Âi, B̂i).

Step 3: prove that (P1) and (P2) are propagated from (Âi, B̂i) to the feedback equivalent

system (eiA, eiB).

Step 4: prove that the solution of (P1) and (P2) in all systems (eiA, eiB) over eiR can

be extended to a global solution for (A, B) over R. �

We start by solving Step 1.

Lemma 4. Let (A, B) be a feedback cyclizable system of size (n, m) over a ring R. Then,

(P1) and (P2) hold for (A, B).

Proof. This is [11, Lemma 3]. We include the proof here, in order to clarify the relation of

Reach and Pols with the feedback cyclization and coefficient assignability properties.

First, note that if (A, B) is feedback cyclizable, by [1] it is also reachable (R(A, B) =
Rn) and coefficient assignable (Pols(A, B) is equal to all monic polynomials of degree n).

Now, it is clear that solving Reach for (A, B) via a matrix F and a vector u is equivalent

to (A + BF, Bu) being reachable, and solving Pols for (A, B) via F, u is equivalent to

(A+BF, Bu) being coefficient assignable. Since reachability and coefficient assignability

are equivalent properties for the single-input system (A + BF, Bu) [1, Theorem 3.2], it

follows that (P1) holds.

Finally, by the feedback cyclization property there exist a matrix F and a vector u with

(A + BF, Bu) reachable, hence F, u solve both Reach and Pols for (A, B), and (P2)

holds. �

With the notations of Theorem 3, for each i = 1, . . . , k we have that eiR is a com-

mutative ring with unit element ei, and since R is von Neumann regular, then so is eiR.

But regular rings are zero-dimensional and hence they are FC- rings (see [21]), therefore

reachable systems are always feedback cyclizable, and hence Step 1 is solved.

Next lemma shows how a variant of the classical Kalman controllability decomposition

[3, Lemma 3.3.3] allows a solution of Step 2. We had to adapt to the language of rings

and modules what was done in [3, Chap. 5] for fields and vector spaces. Also, we will

present our results in a more general context than it is strictly necessary to continue with

the proof of Theorem 3. Concretely, we will not require the Kalman decomposition to have

a reachable part.

Lemma 5. Let (A, B) be a system of size (n, m) over a ring R given by:

A =

[
A1 A2

0 A3

]
, B =

[
B1

0

]
.

with (A1, B1) (not necessarily reachable) of size (r, m) (1 ≤ r ≤ n). If (A1, B1) satisfies

(P1) and (P2), then the same is true for (A, B).

Proof. This is proved in [11, Lemma 4]. First, observe that the limit case r = n is trivial

because A = A1 and B = B1.
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Assume r ≤ n − 1. For any m × n matrix F = [F1 ∗], where F1 is m × r, one has

A + BF =

[
A1 + B1F1 ∗

0 A3

]
, χ(A + BF ) = χ(A1 + B1F1) · χ(A3)︸ ︷︷ ︸

=ϕ(χ(A1+B1F1))

, (2)

where ϕ : R[x] → R[x] is the map given by ϕ(f(x)) = χ(A3)f(x). By making F and F1

vary and noting that ϕ is injective (because χ(A3) is monic), we see that

ϕ gives a bijection between Pols(A1, B1) and Pols(A, B) (3)

This is actually a generalization of the Pole-Shifting Theorem [3, Theorem 13]. Now, for

F = [F1 ∗] as before and u = u1 ∈ Rm, by a similar reasoning one has that

ϕ gives a bijection between Pols(A1 + B1F1, B1u1) and Pols(A + BF, Bu) (4)

Combining (3) and (4), it is clear that

F, u solve Pols for (A, B) if and only if F1, u1 solve Pols for (A1, B1) (5)

On the other hand, because of the block form of (A, B), one has:

im(A∗B) = im

([
B1 A1B1 · · · An−1

1 B1

0 0 · · · 0

])
= im

([
A1

∗B1

0

])
, (6)

where the last equality holds by Cayley-Hamilton. Since (A+BF, Bu) has the same block

structure as (A, B), it follows that

im((A + BF )∗(Bu)) = im

([
(A1 + B1F1)

∗(B1u1)
0

])
, (7)

and as an immediate consequence (recall that R(A, B) = im(A∗B)) we have that

F, u solve Reach for (A, B) if and only if F1, u1 solve Reach for (A1, B1) (8)

From (5) and (8) we see that (P2) and (P3) are extended from (A1, B1) to (A, B). �

Note that although the limit case r = 0 is not covered by the previous lemma, this

situation corresponds to B = 0, and the properties (P1), (P2) hold trivially for (A, B):

indeed, Pols(A, B) − χ(A) and R(A, B) are both zero, and any pair F, u solves Reach

and Pols. In any case, Step 2 is proved and we can proceed with Step 3.

As usual in most systems theory problems, the feedback equivalence of systems pre-

serves the properties of interest.

Lemma 6. Let (A, B) and (A′, B′) be feedback equivalent systems over a commutative

ring R (i.e., there exist invertible matrices P, Q and a feedback matrix K such that A′ =
PAP−1 + PBK and B′ = PBQ). If (P1) and (P2) hold for (A, B), then the same is true

for (A′, B′).
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Proof. See [11, Lemma 5]. �

Now, Step 3 is complete, which moves as right along to Step 4.

Consider the following situation: let R be a ring and e1, . . . , ek pairwise orthogonal

idempotents with sum 1. Then, R can be identified with
⊕k

i=1 eiR, where each eiR can be

viewed as an ideal within R or as a commutative ring with unit element ei. If in addition

R is regular, then all eiR are also regular. The following lemma collects the properties of

such a decomposition which we will need to complete the proof of Theorem 3.

Lemma 7. (Idempotent decomposition) Let R =
⊕k

i=1 eiR be a regular ring decomposed

as above. Then, for any system (A, B) over R one has:

(i) R(A, B) =
⊕k

i=1 R(eiA, eiB).

(ii) Pols(A, B) =
⊕k

i=1 Pols(eiA, eiB).

(iii) (A, B) satisfies Reach (resp. Pols) over R via F, u if and only if (eiA, eiB) satisfies

Reach (resp. Pols) over eiR via eiF, eiu for each i.

(iv) If for all i (eiA, eiB) satisfies (P1) and (P2), then the same holds for (A, B).

Proof. See [11, Lemma 6]. The proof is reproduced here, in order to show the importance

of working with idempotents. (i) and (iii) (Reach) are immediate, because they involve

equalities of images of matrices, which can be ckecked in each component.

In order to prove (ii) and (iii) (Pols), note that: 1

χ(A)︸ ︷︷ ︸
over R

= |xI − A| =

k∑

i=1

ei|xI − A| =

k∑

i=1

|xeiI − eiA| =

k∑

i=1

χ(eiA)︸ ︷︷ ︸
over eiR

, (9)

because |eA| = e|A| for any square matrix A and any idempotent scalar e, and characteristic

polynomials over eiR are computed by using the identity matrix over such a ring, i.e., the

matrix eiI . From the identification of Eq. (9), it follows easily that (ii) and (iii) (Pols) hold.

(iv) The propagation of properties (P1) and (P2) is an immediate consequence of (iii).

�

This finishes Step 4, hence the proof of Theorem 3 is complete.

The following simple examples shows how problems Reach and Pols are solved si-

multaneously.

Example 8. Consider the regular ring R = Z/6Z and the matrices:

A =

[
0 0
0 1

]
, B =

[
1 0
0 3

]
, F =

[
0 0
0 0

]
, u =

[
1
1

]
.

Then, one has:

R(A + BF, Bu) = R(A, B) = R ⊕ 3R
Pols(A + BF, Bu) = Pols(A, B) = x2 + 5 + k1 · (x + 2) + k2 · 3,

for arbitrary k1, k2 in R.

1Here, the determinant of a sum of matrices happens to be equal to the sum of determinants, but please,

kids, don’t do this at home, this is an exceptional consequence of the behaviour of idempotents.
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5. Other Techniques and Future Work

A technique commonly used in systems theory is to consider properties which are pre-

served by only a part of the feedback transformations, in such a way that recursive proofs

can be done, precisely because of the restricted feedback operations. This will be illustrated

with the solution given in [6] to the problem Reach.

Let (A, B) be a system, with B partitioned as B = [b1|B2], being b1 the first column of

B, and consider the following problem:

Find X, y such that R(A + B2X, b1 + B2y) = R(A, B) (10)

This condition trivially implies Reach, by putting F =

[
0
X

]
, u =

[
1
y

]
.

It is proved in [6, Lemma 2] that this strong form of Reach is preserved by a special

subset of feedback transformations. Concretely, if (A′, B′) = (PAP−1 + PBK, PBQ),

with Q of the form

[
q1 0
q2 Q3

]
, then (A, B) satisfies the above condition if and only if

(A′, B′) does.

Then, in [6, Theorem 4] it is proved that -up to feedback transformations with Q of the

special form indicated before- any system (A, B) of size (n, m) can be taken of the form

A =

[
a11 a12

a21 A22

]
, B =

[
d1 b12

0 B22

]
= [b1|B2],

with A22 ∈ R(n−1)×(n−1), B22 ∈ R(n−1)×(m−1), and the remaining blocks of appropriate

sizes. For systems with this block structure, there is a relation between the reachable module

of (A, B) and that of the system (A22, [a21|B22]) of size (n − 1, m), see [6, Lemma 3]:

R(A, B) = dR ⊕ dR(A22, [a21|B22]). (11)

Applying the induction hypothesis to the system (A22, [a21|B22]), there exist matrices

X1, y1 such that R(A22 + B22X1, a21 + B22y1) = R(A22, [a21|B22]). Afterwards, if

we define X = [y1 X1], after operating one has:

A + B2X =

[
∗ ∗

a21 + B22y1 A22 + B22X1

]
, b1 =

[
d1

0

]
.

Finally, applying the decomposition (11) it follows that (A, B) satisfies the condition (10)

by means of X = [y1 X1] and y = 0. Note that if Q had not contained this zero block, this

type of inductive proof would not have been possible.

Another interesting technique, specially suited to extend results from fields to von Neu-

mann regular rings, is the one used in [20, Theorem 4.1], where it is proved that two systems

are equivalent over a regular ring R if and only if they are equivalent over the residue field

R/m, for all maximal ideals m of R. As an illustration of this, we will reprove the fact that

von Neumann regular rings satisfy Reach.

Given a system (A, B) over a regular ring R, the existence of a matrix F and a vector

u satisfying R(A + BF, Bu) = R(A, B) is equivalent to saying that the reachability
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matrices A∗B and (A + BF )∗(Bu) have the same image, which means the existence of

matrices X, Y of appropriate sizes such that ((A+BF )∗Bu) ·X = A∗B and (A∗B) ·Y =

(A + BF )∗(Bu), which we write as
{

((A + BF )∗Bu) · X − A∗B = 0

(A∗B) · Y − (A + BF )∗(Bu) = 0
(12)

Note that this is a collection of 2mn2 equalities, one for each entry of two n × nm matrix

equalities. We will (re)prove that there exist matrices F, u, X, Y satisfying (12).

For each maximal ideal m of R, the system (A(m), B(m)) over the field R/m satisfies

Reach, i.e., there exist matrices F (m), u(m) with coefficients in R/m such that

R(A(m) + B(m)F (m), B(m)u(m)) = R(A(m), B(m))

Since projection modulo m is surjective, one can take matrices Fm, um, Xm, Y m over R
which reduced modulo m are precisely F (m), u(m), X(m), Y (m). Reasoning like in (12),

the following congruences modulo m hold:
{

((A + BFm)∗Bum) ·Xm − A∗B ≡ 0 (mod m)
(A∗B) · Y m − (A + BFm)∗(Bum) ≡ 0 (mod m)

(13)

At this point, we recall that every localization of a von Neumann regular ring at a prime

(i.e., maximal) ideal is a field (see e.g., [17] or [18]). In fact, there is a canonical ismorphism

between the local ring Rm and the residue field R/m, the correspondence being given by
a
1 7→ a + m. This means that an element a belongs to m (i.e., it is zero in R/m) if and only

if it is zero in the ring of fractions Rm, i.e., there exists an element t /∈ m such that ta = 0,

a condition in general much stronger than just saying “a lies in m”.

Applying this fact to (13), there exists a finite family of elements si /∈ m (one for each

of the 2mn2 congruences) which transform the congruences “something belongs to m” into

equalities “something equals zero”. Now, if we define sm =
∏2mn2

i=1 si, it follows that

sm /∈ m and
{

sm (((A + BFm)∗Bum) · Xm − A∗B) = 0

sm ((A∗B) · Y m − (A + BFm)∗(Bum)) = 0
(14)

Moreover, knowing that any element of a regular ring is the product of a unit with an

idempotent [16, Lemma 10], sm can be assumed to be idempotent.

The condition sm /∈ m ensures that none of the elements sm belong to all maximal ideals

of R, which means that the (possibly infinite) collection {sm} generates an ideal which is

the whole ring R. Choosing a finite linear combination which sums up 1:

α1s
m1 + · · ·+ αrs

mr = 1,

one can say that sm1 , . . . , smr span R. This is the crucial step: we have extracted a finite

subset of something possibly infinite.

Now, starting from sm1 , . . . , smr , the following new family is constructed:




e1 = sm1

e2 = (1− sm1)sm2

...

er = (1 − sm1) · · · (1− smr−1)smr
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It is clear that each et is idempotent (it is a product of idempotents), and that the et’s are

pairwise orthogonal: indeed, if t < l, then et is orthogonal to el because et has a factor smt

and el has a factor 1 − smt , and smt is orthogonal to 1− smt .

In addition, the elements et generate R, an immediate consequence of the fact that a

product ab belongs to a prime ideal if and only if one of a, b belongs to it. Indeed, if m were

a maximal ideal containing all the et’s, then in the expression of e1 we see that m contains

sm1 , hence it does not contain 1 − sm1 , therefore in the expression of e2 we deduce that m

contains sm2 , and so on. Continuing in this manner, one arrives at an equation saying that

m contains a product of r factors without containing any of the first r−1 factors, so it must

contain the last factor, which is smr , hence m contains sm1 , . . . , smr , contradicting the fact

that these elements generate R.

Now, define the following matrices:

F =

r∑

t=1

etF
mt , u =

r∑

t=1

etu
mt , X =

r∑

t=1

etX
mt, Y =

r∑

t=1

etY
mt ,

which are the candidates to be a solution of (12). Once we know that e1, . . . , er generate

R, it is clear that a matrix with coefficients in R is zero if and only if it is annihilated by all

of the et’s. Therefore, in order to prove (12) we have to check that for all t one has:

{
et (((A + BF )∗Bu) · X − A∗B) = 0

et ((A∗B) · Y − (A + BF )∗(Bu)) = 0

Note that, in virtue of the orthogonality relations among the et’s, one has that etF = etF
mt ,

etu = etu
mt , etX = etX

mt , etY = etY
mt . Using this and the fact that any power of et is

equal to et, it follows that the last equation is equivalent to:

{
et (((A + BFmt )∗Bumt ) · Xmt − A∗B) = 0

et ((A∗B) · Y mt − (A + BFmt )∗(Bumt)) = 0

But et is a multiple of smt , hence the above equality is true, because of Eq. (14), in the

case m = mt, and so F, u, X, Y give a solution to (12). This completes the proof that

von Neumann regular rings satisfy Reach. With an analogous procedure, it can also be

(re)proved that Pols is also solved, with the same F, u used to solve Reach.

6. Conclusion

In this chapter we have studied a very interesting application of Linear Algebra over

commutative rings to systems theory, when the underlying coefficient ring is von Neumann

regular. While Linear Algebra over rings is generally very complex, in the case of regular

rings we have seen that certain idempotent decompositions make life easier, and allow us

to extend various results from systems theory over fields, to systems over von Neumann

regular rings. Concretely, we have presented a canonical form for the feedback equiva-

lence of systems, and a solution to the problems of coefficient assignability and feedback

cyclization, in a very strong form which is valid for arbitrary non reachable systems.
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Chapter 5

HOW TO CHARACTERIZE PROPERTIES

OF GENERAL HERMITIAN QUADRATIC

MATRIX-VALUED FUNCTIONS BY RANK

AND INERTIA

Yongge Tian∗

China Economics and Management Academy,

Central University of Finance and Economics, Beijing, China

Abstract

This chapter gives a comprehensive investigation to behaviors of a general Hermitian

quadratic matrix-valued function

φ(X) = (AXB + C )M(AXB +C)
∗

+D

by using ranks and inertias of matrices. The author first establishes a group of an-

alytical formulas for calculating the global maximal and minimal ranks and inertias

of φ(X). Based on the formulas, the author derives necessary and sufficient condi-

tions for φ(X) to be a positive definite, positive semi-definite, negative definite, neg-

ative semi-definite function, respectively, and then solves two optimization problems

of finding two matrices X̂ or X̃ such that φ(X) < φ(X̂) and φ(X) 4 φ(X̃) hold

for all X, respectively. As extensions, the author considers definiteness and optimiza-

tion problems in the Löwner sense of the following two types of multiple Hermitian

quadratic matrix-valued function

φ(X1, . . . , Xk ) =

(
k∑

i=1

AiXiBi + C

)
M

(
k∑

i=1

AiXiBi + C

)∗
+D,

ψ(X1 , . . . , Xk ) =

k∑

i=1

(AiXiBi + Ci )Mi(AiXiBi + Ci )
∗

+D.

Some open problems on algebraic properties of these matrix-valued functions are men-

tioned at the end of the chapter.

∗E-mail address: yongge.tian@gmail.com
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1. Introduction

A matrix-valued function is a map between two matrix spaces Cm×n and Cp×q, which

can generally be written as

Y = f(X) for Y ∈ Cm×n and X ∈ Cp×q, (1)

or briefly, f : Cp×q → Cm×n, where Cm×n denotes the set of all m× n complex matrices.

If f∗(X) = f(X) for all X in (1), then it is said to be Hermitian. Mappings between

matrix spaces can be constructed arbitrarily from ordinary operations of given matrices and

variable matrices, but linear and quadratic matrix-valued functions are widely used and are

extensively studied from theoretical and applied points of view. It is extremely difficult

at any case to give a comprehensive investigation and obtain analytical results to a given

matrix-valued function because of non-commutativity of matrix algebra.

One of the fundamental quadratic cases of (1) is the following Hermitian quadratic

matrix-valued function (HQMVF):

φ(X) = (AXB +C )M(AXB + C)∗ +D, (2)

whereA ∈ Cn×p, B ∈ Cm×q , C ∈ Cn×q, D ∈ Cn
H andM ∈ C

q
H

are given, andX ∈ Cp×m

is a variable matrix. We may treat (2) as a combination φ = τ◦ρ of the following two simple

linear and quadratic Hermitian matrix-valued functions:

ρ : X → AXB +C, τ : Y → YMY ∗ +D. (3)

Quadratic objects are cornerstones of mathematics and are prominent subjects of study

in many fields of mathematics. As a natural extension of ordinary quadratic functions,

quadratic matrix-valued functions (including quadratic forms as their special cases) occur

widely in both theoretical and applied fields of sciences. Many contributions on matrix-

valued functions and their behaviors can be found in the literature; see, e.g., [1–12]. As

an extension, we also consider the following two types of general quadratic matrix-valued

function

φ(X1, . . . , Xk ) =

(
k∑

i=1

AiXiBi +C

)
M

(
k∑

i=1

AiXiBi +C

)∗
+D, (4)

ψ(X1, . . . , Xk ) =

k∑

i=1

(AiXiBi +Ci)Mi(AiXiBi + Ci)
∗ +D, (5)

where Ai, Bi, Ci, C, D, Mi and M are given matrices with Mi, M and D Hermitian, Xi

is a variable matrix, i = 1, . . . , k.

The rank and inertia of a Hermitian matrix are two generic concepts in matrix theory for

describing the dimension of the row or column vector space and the sign distribution of the
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real eigenvalues of the matrix, which are well understood and are easy to compute by the

well-known elementary or Hermitian congruent matrix operations. These two quantities

play an essential role in characterizing algebraic properties of matrices and relations be-

tween two matrices. These integer indices occur only in finite-dimensional algebras, which

are not replaceable and cannot be approximated by other continuous quantities. Because

the rank and inertia of a matrix can only take finite integers between 0 and the dimensions

of the matrix, it is not hard to give upper and lower bounds for ranks and inertias of matri-

ces, and further the global maximal and minimal values of rank and inertia of a Hermitian

matrix-valued function do exist no matter what decision domains of variable matrices are

given. In this case, it is really expected to establish certain analytical formulas for calcu-

lating the maximal and minimal ranks and inertias of a given matrix-valued function from

theoretical and applied points of view. However, due to the integer property of rank and

inertia of matrix, inexact or approximate values of maximal and minimal ranks and inertias

of matrices are less valuable. In other words, we cannot use approximation methods to

find the maximal and minimal possible ranks and inertias of matrix-valued function. This

fact means that methods of solving matrix rank and inertia optimization problems are not

consistent with any of the ordinary continuous and discrete problems in optimization theory.

Precisely, matrix rank and inertia optimization problems are a class of discontinuousop-

timization problems, in which decision variables are matrices running over certain matrix

sets, while the ranks and inertias of the variable matrices are some integer-valued objec-

tive functions. It has been known that matrix rank and inertia optimization problems are

NP-hard in general due to discontinuity and combinational nature of ranks and inertias of

matrices and algebraic structures of the given matrix sets. However, it is really lucky that

we can establish analytical formulas for calculating extremal ranks and inertias of matrix-

valued functions for some special feasible matrix sets by using various expansion formulas

for ranks and inertias of matrices and some tricky matrix operations. The present author has

been working on this topic with great effort in the past decades by proving a huge amount of

new formulas for calculating ranks and inertias of matrices, and giving analytical solutions

to many matrix rank and inertia optimization problems.

The main purpose of this chapter is to establish a unified theory on optimizations of

ranks and inertias of HQMVFs, as well as partial orderings of HQMVFs by using pure

algebraic operations of matrices. We also present many consequences on behaviors of

HQMVFs, and show their applications in solving Hermitian quadratic matrix equations

and establishing Hermitian quadratic matrix inequalities.

Before proceeding, we introduce the notation to the reader and explain its usage in this

chapter.

Cm×n denotes the set of all m× n complex matrices;

Cm
H denotes the set of all m×m Hermitian complex matrices;

A∗, r(A) and R(A) stand for the conjugate transpose, rank and range (column

space) of a matrix A ∈ Cm×n, respectively;

Im denotes the identity matrix of order m;

[A, B ] denotes a row block matrix consisting of A and B;

the Moore–Penrose inverse ofA ∈ Cm×n, denoted by A†, is defined to be the unique

solution X ∈ Cn×m satisfying the four matrix equations AXA = A, XAX = X,
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(AX)∗ = AX and (XA)∗ = XA;

the symbols EA and FA stand for EA = Im − AA† and FA = In − A†A, which

satisfy EA∗ = FA and FA∗ = EA;

an X ∈ Cn×m is called a g-inverse of A ∈ Cm×n, denoted by A−, if it satisfies

AXA = A;

an X ∈ Cm
H is called a Hermitian g-inverse of A ∈ Cm

H , denoted by A∼, if it satisfies

AXA = A; called a reflexive Hermitian g-inverse of A ∈ Cm
H

, denoted by A∼
r , if it

satisfies AXA = A and XAX = X ;

i+(A) and i−(A), called the partial inertia of A ∈ Cm
H , are defined to be the

number of the positive and negative eigenvalues of A counted with multiplicities,

respectively, which satisfy r(A) = i+(A) + i−(A);
A � 0, A < 0, A ≺ 0 and A 4 0 mean that A is a Hermitian positive definite,

positive semi-definite, negative definite, negative semi-definite matrix, respectively;

two A, B ∈ Cm
H are said to satisfy the inequalities A � B, A < B, A ≺ B and

A 4 B in the Löwner partial ordering if A − B is positive definite, positive semi-

definite, negative definite and negative semi-definite, respectively.

In what follows, we take the rank and inertia of φ(X) in (2) as integer-valued objective

functions, and solve the following optimization problem.

Problem 1. For φ(X) in (2), establish analytical formulas for calculating the following

global extremal ranks and inertias

max
X∈Cp×m

r[φ(X)], min
X∈Cp×m

r[φ(X)], max
X∈Cp×m

i±[φ(X)], min
X∈Cp×m

i±[φ(X)]. (6)

Based on the analytical formulas, the author then solves the following two problems on

equalities and inequalities of φ(X).

Problem 2. For φ(X) in (2),

(i) establish necessary and sufficient conditions for the existence of an X ∈ Cp×m such

that

φ(X) = 0, i.e., (AXB +C )M(AXB +C)∗ +D = 0; (7)

(ii) establish necessary and sufficient conditions for the following inequalities

φ(X) � 0, φ(X) < 0, φ(X) ≺ 0, φ(X) 4 0 (8)

to hold for an X ∈ Cp×m, respectively;

(iii) establish necessary and sufficient conditions for

φ(X) � 0, φ(X) < 0, φ(X) ≺ 0, φ(X) 4 0 for all X ∈ Cp×m (9)

to hold, respectively, namely, to give identifying conditions for φ(X) to be positive

definite, positive semi-definite, negative definite, negative semi-definite function, re-

spectively.
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Problem 3. For φ(X) in (2), establish necessary and sufficient conditions for the existence

of X̂, X̃ ∈ Cp×m such that

φ(X) < φ(X̂) and φ(X) 4 φ(X̃) (10)

hold for all X ∈ Cp×m, respectively, and derive analytical expressions of the two matrices

X̂ and X̃.

It should be pointed out that the well-known Lagrangian method in classic analysis

is not available for solving (10) because the optimal criteria in (10) are defined from the

Löwner partial ordering instead of traces or norms of matrices. In this case, we use rank

and inertia formulas of matrices and regular operations of the given matrices and their gen-

eralized inverses to establish a standard algebraic method for deriving analytical solutions

to these two optimization problems.

2. Preliminaries

Lemma 4. Let S be a matrix subset in Cm×n, and H be a matrix subset in Cm
H
. Then the

following hold.

(a) Under m = n, S has a nonsingular matrix if and only if maxX∈S r(X) = m.

(b) Under m = n, all X ∈ S are nonsingular if and only if minX∈S r(X) = m.

(c) 0 ∈ S if and only if minX∈S r(X) = 0.

(d) S = {0} if and only if maxX∈S r(X) = 0.

(e) H has a matrixX � 0 (X ≺ 0) if and only if

max
X∈H

i+(X) = m

(
max
X∈H

i−(X) = m

)
.

(f) All X ∈ H satisfy X � 0 (X ≺ 0), namely, H is a subset of the cone of positive

definite matrices (negative definite matrices), if and only if

min
X∈H

i+(X) = m

(
min
X∈H

i−(X) = m

)
.

(g) H has a matrixX < 0 (X 4 0) if and only if

min
X∈H

i−(X) = 0

(
min
X∈H

i+(X) = 0

)
.

(h) All X ∈ H satisfy X < 0 (X 4 0), namely, H is a subset of the cone of positive

semi-definite matrices (negative semi-definite matrices), if and only if

max
X∈H

i−(X) = 0

(
max
X∈H

i+(X) = 0

)
.
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In order to simplify block matrices, we use the following three types of elementary

block matrix operation (EBMO, for short):

(i) interchange two block rows (columns) in a block matrix;

(ii) multiply a block row (column) by a nonsingular matrix from the left-hand (right-

hand) side in a block matrix;

(iii) add a block row (column) multiplied by a matrix from the left-hand (right-hand) side

to another block row (column);

and use the following three types of elementary block congruence matrix operation

(EBCMO, for short) for a block Hermitian matrix with the same row and column parti-

tion:

(i) interchange ith and jth block rows, while interchange ith and jth block columns in

the block Hermitian matrix;

(ii) multiply ith block row by a nonsingular matrix P from the left-hand side, while

multiply ith block column by P ∗ from the right-hand side;

(iii) add ith block row multiplied by a matrix P from the left-hand side to jth block row,

while add ith block column multiplied by P ∗ from the right-hand side to jth block

column.

It is obvious that EBMOs do not change the rank of a block matrix, while EBCMOs do not

change the inertia of a block Hermitian matrix.

The question of whether a given matrix-valued function is semi-definite everywhere

is ubiquitous in matrix theory and applications. Lemma 4(e)–(h) assert that if certain ex-

plicit formulas for calculating the global maximal and minimal inertias of Hermitian matrix-

valued functions are established, we can use them as a quantitative tool, as demonstrated

in Sections 3–6 below, to derive necessary and sufficient conditions for the matrix-valued

functions to be definite or semi-definite. In addition, we are able to use these inertia formu-

las to establish various matrix inequalities in the Löwner sense, and to solve many matrix

optimization problems in the Löwner sense.

The Results in the following lemma are well known.

Lemma 5. Let A ∈ Cm
H , B ∈ Cn

H, Q ∈ Cm×n, and P ∈ Cp×m with r(P ) = m. Then, the

following rank and inertia formulas hold

i±(PAP ∗) = i±(A), (11)

i±(λA) =

{
i±(A) if λ > 0
i∓(A) if λ < 0

, (12)

i±

[
A 0

0 B

]
= i±(A) + i±(B), (13)

i+

[
0 Q
Q∗ 0

]
= i−

[
0 Q
Q∗ 0

]
= r(Q). (14)

Lemma 6. ( [13]) Let A ∈ Cm
H
, B ∈ Cm×n, D ∈ Cn

H
, and let

M1 =

[
A B
B∗ 0

]
, M2 =

[
A B
B∗ D

]
.
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Then, the following expansion formulas for ranks and inertias of matrices hold

i±(M1) = r(B) + i±(EBAEB), (15)

r(M1) = 2r(B) + r(EBAEB), (16)

i±(M2) = i±(A) + i±

[
0 EAB

B∗EA D −B∗A†B

]
, (17)

r(M2) = r(A) + r

[
0 EAB

B∗EA D −B∗A†B

]
. (18)

In particular, the following hold.

(a) If A < 0, then

i+(M1) = r[A, B ], i−(M1) = r(B), r(M1) = r[A, B ] + r(B). (19)

(b) If A 4 0, then

i+(M1) = r(B), i−(M1) = r[A, B ], r(M1) = r[A, B ] + r(B). (20)

(c) If R(B) ⊆ R(A), then

i±(M2) = i±(A) + i±(D −B∗A†B ), r(M2) = r(A) + r(D−B∗A†B ). (21)

(d) r(M2) = r(A) ⇔ R(B) ⊆ R(A) and D = B∗A†B.

(e) M2 < 0 ⇔ A < 0, R(B) ⊆ R(A) and D −B∗A†B < 0.

Lemma 7. ( [14]) Let A ∈ Cm×p, B ∈ Cq×n and C ∈ Cm×n be given. Then the matrix

equation AXB = C is consistent if and only if R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗), or

equivalently, AA†CB†B = AA†C = CB†B = C. In this case, the general solution can

be written as

X = A†CB† + FAV1 + V2EB, (22)

where V1 and V2 are arbitrary matrices. In particular, AXB = C has a unique solution if

and only if

r(A) = p, r(B) = q, R(C) ⊆ R(A), R(C∗) ⊆ R(B∗). (23)

Lemma 8. ( [15–17]) Let A ∈ Cm×n, B ∈ Cm×p andC ∈ Cq×n be given, andX ∈ Cp×q

be a variable matrix. Then, the global maximal and minimal ranks of A+BXC are given

by the following explicit formulas

max
X∈Cp×q

r(A+ BXC ) = min

{
r[A, B ], r

[
A

C

]}
, (24)

min
X∈Cp×q

r(A+ BXC ) = r[A, B ] + r

[
A
C

]
− r

[
A B
C 0

]
. (25)

Complimentary Contributor Copy



158 Yongge Tian

Lemma 9 ( [18]). Let A ∈ Cm
H , B ∈ Cm×n and C ∈ Cp×m be given, X ∈ Cn×p be a

variable matrix. Then, the global maximal and minimal ranks and inertias of A+BXC +

(BXC)∗ are given by the following explicit formulas

max
X∈Cn×p

r[A+ BXC + (BXC)∗ ] = min

{
r[A, B, C∗ ], r

[
A B
B∗ 0

]
, r

[
A C∗

C 0

]}
,

(26)

min
X∈Cn×p

r[A+ BXC + (BXC)∗ ] = 2r[A, B, C∗ ]

+ max{ s+ + s−, t+ + t−, s+ + t−, s− + t+}, (27)

max
X∈Cn×p

i±[A+BXC + (BXC)∗ ] = min

{
i±

[
A B
B∗ 0

]
, i±

[
A C∗

C 0

]}
, (28)

min
X∈Cn×p

i±[A+BXC + (BXC)∗ ] = r[A, B, C∗ ] + max{ s±, t± }, (29)

where

s± = i±

[
A B

B∗ 0

]
− r

[
A B C∗

B∗ 0 0

]
, t± = i±

[
A C∗

C 0

]
− r

[
A B C∗

C 0 0

]
.

The matrices X that satisfy (26)–(29) are not necessarily unique, and their expressions

were also given in [18] by using generalized inverses of matrices and certain simultaneous

decomposition of the three given matrices A, B and C.

3. Basic Formulas

We first solve Problem 1 through a linearization method and Lemma 9. The method

was adopted in the author’s papers [19,20].

Theorem 10. Let φ(X) be as given in (2), and define

N1 =

[
D + CMC∗ A

A∗ 0

]
, N2 =

[
D +CMC∗ CMB∗ A

A∗ 0 0

]
, (30)

N3 =

[
D + CMC∗ CMB∗

BMC∗ BMB∗

]
, N4 =

[
D +CMC∗ CMB∗ A
BMC∗ BMB∗ 0

]
. (31)

Then, the global maximal and minimal ranks and inertias of φ(X) are given by the follow-

ing explicit formulas

max
X∈Cp×m

r[ φ(X) ] = min{r[D+CMC∗ , CMB∗ , A ], r(N1), r(N3)} , (32)

min
X∈Cp×m

r[ φ(X) ] = 2r[D+CMC∗, CMB∗, A ] + max{ s1, s2, s3, s4 }, (33)

max
X∈Cp×m

i±[ φ(X) ] = min {i±(N1), i±(N3)} , (34)

min
X∈Cp×m

i±[ φ(X) ] = r[D+ CMC∗, CMB∗, A ]

+ max {i±(N1) − r(N2), i±(N3)− r(N4)} , (35)
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where

s1 = r(N1)− 2r(N2), s2 = r(N3) − 2r(N4),

s3 = i+(N1) + i−(N3) − r(N2) − r(N4),

s4 = i−(N1) + i+(N3) − r(N2) − r(N4).

Proof. It is easy to verify from (17) and (18) that

i±[ (AXB +C )M(AXB +C)∗ +D ]

= i±

[
−M M(AXB+ C )∗

(AXB+C )M D

]
− i±(−M), (36)

r[ (AXB + C )M(AXB + C)∗ +D ]

= r

[
−M M(AXB+ C )∗

(AXB +C )M D

]
− r(M), (37)

that is, the inertia and rank of φ(X) in (2) can be calculated by those of the following linear

matrix-valued function

ψ(X) =

[
−M M(AXB +C)∗

(AXB+ C )M D

]

=

[
−M MC∗

CM D

]
+

[
0

A

]
X [BM, 0 ] +

[
MB∗

0

]
X∗[ 0, A∗ ]. (38)

Note from (36) and (37) that

max
X∈Cp×m

r[ φ(X) ] = max
X∈Cp×m

r[ψ(X)]− r(A), (39)

min
X∈Cp×m

r[ φ(X) ] = min
X∈Cp×m

r[ψ(X)]− r(A), (40)

max
X∈Cp×m

i±[ φ(X) ] = max
X∈Cp×m

i±[ψ(X)]− i∓(A), (41)

min
X∈Cp×m

i±[ φ(X) ] = min
X∈Cp×m

i±[ψ(X)]− i∓(A). (42)

Applying Lemma 9 to (38), we first obtain

max
X∈Cp×m

r[ψ(X)] = min{ r(H), r(G1), r(G2) }, (43)

min
X∈Cp×m

r[ψ(X)] = 2r(H) + max{ s+ + s−, t+ + t−, s+ + t−, s− + t+}, (44)

max
X∈Cp×m

i±[ψ(X)] = min{ i±(G1), i±(G2) }, (45)

min
X∈Cp×m

i±[ψ(X)] = r(H) + max{ s±, t± }, (46)

where

H =

[
−M MC∗ 0 MB∗

CM D A 0

]
,

G1 =



−M MC∗ 0

CM D A
0 A∗ 0


 , G2 =



−M MC∗ MB∗

CM D 0
BM 0 0


,
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H1 =



−M MC∗ 0 MB∗

CM D A 0
0 A∗ 0 0


, H2 =



−M MC∗ MB∗ 0

CM D 0 A
BM 0 0 0


,

and

s± = i±(G1) − r(H1), t± = i±(G2) − r(H2).

It is easy to derive from Lemmas 5 and 6, elementary matrix operations and congruence

matrix operations that

r(H) = r(M) + r[D+CMC∗, CMB∗, A ], (47)

r(H1) = r(M) + r

[
D +CMC∗ CMB∗ A

A∗ 0 0

]
= r(M) + r(N2), (48)

r(H2) = r(M) + r

[
D +CMC∗ CMB∗ A
BMC∗ BMB∗ 0

]
= r(M) + r(N4), (49)

i±(G1) = i∓(M) + i±

[
C +CMC∗ A

A∗ 0

]
= i∓(M) + i±(N1), (50)

i±(G2) = i∓(M) + i±

[
D + CMC∗ CMB∗

BMC∗ BMB∗

]
= i∓(M) + i±(N3). (51)

Hence,

r(G1) = r(M) + r(N1), r(G2) = r(M) + r(N3), (52)

s± = i±(G1)− r(H1) = i±(N1) − r(N2) − i±(M), (53)

t± = i±(G2) − r(H2) = i±(N3) − r(N4) − i±(M). (54)

Substituting (47)–(54) into (43)–(46), and then (43)–(46) into (39)–(42), we obtain (32)–

(35).

Without loss of generality, we assume in what follows that bothA 6= 0 andBMB∗ 6= 0

in (2). Applying Lemma 4 to (32)–(35), we obtain the following results.

Corollary 11. Let φ(X) be as given in (2), N1 and N3 be the matrices of (30) and (31),

and let J = D +CMC∗. Then, the following hold.

(a) There exists an X ∈ Cp×m such that φ(X) is nonsingular if and only if

r[ J, CMB∗, A ] = n, r(N1) > n and r(N3) > n.

(b) φ(X) is nonsingular for all X ∈ Cp×m if and only if r(D+ CMC∗ ) = n, and one

of the following four conditions holds

(i) BMC∗J−1A = 0 and A∗J−1A = 0.

(ii) BMC∗J−1A = 0 and BMC∗J−1CMB∗ = BMB∗.

(iii) A∗J−1A < 0, BMB∗ − BMC∗J−1CMB∗ < 0, R(A∗J−1CMB∗) ⊆
R(A∗J−1A), and R(BMC∗J−1A) ⊆ R(BMB∗ − BMC∗J−1CMB∗ ).

(iv) A∗J−1A 4 0, BMB∗ − BMC∗J−1CMB∗ 4 0, R(A∗J−1CMB∗) ⊆

R(A∗J−1A) and R(BMC∗J−1A) ⊆ R(BMB∗ −BMC∗J−1CMB∗ ).
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Proof. Setting the right-hand side of (32) equal to n directly leads to the result in (a). Under

the condition r(J) = n, (33) reduces to

min
X∈Cp×m

r[ φ(X) ] = 2n+ max{ s1, s2, s3, s4 }, (55)

where

s1 =r(A∗J−1A) − 2r[A∗J−1CMB∗, A∗J−1A ] − n,

s2 =r(BMB∗−BMC∗J−1CMB∗)−2r[BMB∗− BMC∗J−1CMB∗, BMC∗J−1A]

−n,

s3 =i−(A∗J−1A) + i−(BMB∗ −BMC∗J−1CMB∗ ) − r[A∗J−1CMB∗, A∗J−1A ]

−r[BMB∗ −BMC∗J−1CMB∗, BMC∗J−1A ]− n,

s4 =i+(A∗J−1A) + i+(BMB∗ −BMC∗J−1CMB∗ ) − r[A∗J−1CMB∗, A∗J−1A ]

−r[BMB∗ −BMC∗J−1CMB∗, BMC∗J−1A ]− n.

Setting (55) equal to n, we see that φ(X) is nonsingular for all X ∈ Cp×m if and only if

r(D+ CMC∗) = n, and one of the following four rank equalities holds

(i) r(A∗J−1A) = 2r[A∗J−1CMB∗ , A∗J−1A ];

(ii) r(BMB∗−BMC∗J−1CMB∗)=2r[BMB∗−BMC∗J−1CMB∗, BMC∗J−1A];

(iii) i−(A∗J−1A)+i−[BMB∗−BMC∗J−1CMB∗ ] = r[A∗J−1CMB∗, A∗J−1A ]+

r[BMB∗ −BMC∗J−1CMB∗ , BMC∗J−1A ];

(iv) i+(A∗J−1A)+i+(BMB∗−BMC∗J−1CMB∗ ) = r[A∗J−1CMB∗, A∗J−1A ]+

r[BMB∗ −BMC∗J−1CMB∗ , BMC∗J−1A ]− n;

which are further equivalent to the result in (b) by comparing both sides of the four rank

equalities.

The following two corollaries can be shown by a similar approach.

Corollary 12. Let φ(X) be as given in (2), and let N1 and N3 be the matrices of (30) and

(31). Then, the following hold.

(a) There exists an X ∈ Cp×m such that φ(X) = 0, namely, the matrix equation in (7)

is consistent, if and only if

R(D+CMC∗ ) ⊆ R[A, CMB∗ ], r(N1) = 2r(A),

2r[A, CMB∗ ] + r(N3) − 2r(N4) 6 0,

r[A, CMB∗ ] + i+(N3) − r(N4) 6 0,

r[A, CMB∗ ] + i−(N3) − r(N4) 6 0.

(b) φ(X) = 0 holds for all X ∈ Cp×m if and only if [D+CMC∗, CMB∗, A ] = 0, or

[
D +CMC∗ A

A∗ 0

]
= 0, or

[
D +CMC∗ CMB∗

BMC∗ BMB∗

]
= 0.
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Corollary 13. Let φ(X) be as given in (2), and let N1 and N3 be the matrices of (30) and

(31). Then, the following hold.

(a) There exists an X ∈ Cp×m such that φ(X) � 0, namely, the matrix inequality is

feasible, if and only if

i+(N1) = n and i+(N3) > n, or i+(N1) > n and i+(N3) = n.

(b) There exists an X ∈ Cp×m such that φ(X) ≺ 0, the matrix inequality is feasible, if

and only if

i−(N1) = n and i−(N3) > n, or i−(N1) > n and i−(N3) = n.

(c) φ(X) � 0 holds for all X ∈ Cp×m, namely, φ(X) is a completely positive matrix-

valued function, if and only if

D +CMC∗ � 0, N3 < 0, R

[
A
0

]
⊆ R(N3).

(d) φ(X) ≺ 0 holds for all X ∈ Cp×m namely, φ(X) is a completely negative matrix-

valued function, if and only if

D +CMC∗ ≺ 0, N3 4 0, R

[
A
0

]
⊆ R(N3).

(e) There exists an X ∈ Cp×m such that φ(X) < 0, namely, the matrix inequality is

feasible, if and only if

r[D+ CMC∗, CMB∗, A ] + i−(N1) 6 r(N2)

and

r[D+ CMC∗, CMB∗, A ] + i−(N3) 6 r(N4).

(f) There exists an X ∈ Cp×m such that φ(X) 4 0, namely, the matrix inequality is

feasible, if and only if

r[D+CMC∗, CMB∗, A ] + i+(N1) 6 r(N2)

and

r[D+ CMC∗, CMB∗, A ] + i+(N3) 6 r(N4).

(g) φ(X) < 0 holds for all X ∈ Cp×m, namely, φ(X) is a positive matrix-valued

function, if and only if N3 < 0.

(h) φ(X) 4 0 holds for all X ∈ Cp×m, namely, φ(X) is a negative matrix-valued

function, if and only if N3 4 0.

Two special cases of Theorem 11 are presented below.
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Corollary 14. Let

φ(X) = (AXB +C ) (AXB + C)∗ −DD∗, (56)

and define

N1 =

[
CC∗ −DD∗ A

A∗ 0

]
, N2 =

[
CC∗ −DD∗ CB∗ A

A∗ 0 0

]
, (57)

N3 =

[
CC∗ −DD∗ CB∗

BC∗ BB∗

]
, N4 =

[
CC∗ −DD∗ CB∗ A

BC∗ BB∗ 0

]
. (58)

Then, the global maximal and minimal ranks and inertias of φ(X) are given by

max
X∈Cp×m

r[ φ(X) ] = min{ r[CC∗ −DD∗, CB∗, A ], r(N1), r(N3) } , (59)

min
X∈Cp×m

r[ φ(X) ] = 2r[CC∗ −DD∗, CB∗, A ] + max{ s1, s2, s3, s4 }, (60)

max
X∈Cp×m

i±[ φ(X) ] = min{ i±(N1), i±(N3) } , (61)

min
X∈Cp×m

i±[ φ(X) ] = r[CC∗ −DD∗, CB∗, A ]

+ max {i±(N1)− r(N2), i±(N3) − r(N4)} , (62)

where

s1 = r(N1)− 2r(N2), s2 = r(N3) − 2r(N4),

s3 = i+(N1) + i−(N3) − r(N2) − r(N4),

s4 = i−(N1) + i+(N3) − r(N2) − r(N4).

Let

φ(X) = (AXB +C ) (AXB + C)∗ − In. (63)

Then φ(X) = 0 means that the rows of AXB + C are orthogonal each other. Further, if

AXB + C is square, φ(X) = 0 means that AXB + C is unitary.

Corollary 15. Let φ(X) be as given in (63), and define

N1 =

[
CC∗ − In A

A∗ 0

]
, N2 =

[
CC∗ − In CB∗ A

A∗ 0 0

]
, (64)

N3 =

[
CC∗ − In CB∗

BC∗ BB∗

]
, N4 =

[
CC∗ − In CB∗ A

BC∗ BB∗ 0

]
. (65)

Then, the global maximal and minimal ranks and inertias of φ(X) are given by

max
X∈Cp×m

r[ φ(X) ] = min{ r[CC∗ − In, CB
∗, A ], r(N1), r(N3) } , (66)

min
X∈Cp×m

r[ φ(X) ] = 2r[CC∗ − In, CB
∗ , A ] + max{ s1, s2, s3, s4 }, (67)

max
X∈Cp×m

i±[ φ(X) ] = min{ i±(N1), i±(N3) } , (68)

min
X∈Cp×m

i±[ φ(X) ] = r[CC∗ − In, CB
∗, A ]

+ max { i±(N1) − r(N2), i±(N3) − r(N4)} , (69)
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where

s1 = r(N1)− 2r(N2), s2 = r(N3) − 2r(N4),

s3 = i+(N1) + i−(N3) − r(N2) − r(N4),

s4 = i−(N1) + i+(N3) − r(N2) − r(N4).

Whether a given function is null or positive or nonnegative everywhere is a fundamen-

tal consideration when characterizing behaviors of the function. It was realized in matrix

theory that the determination of the definiteness or semi-definiteness of a general matrix-

valued function is NP-hard. Corollaries 11–13, however, show that we are really able to

characterize the definiteness and semi-definiteness of (2) by using some ordinary and ele-

mentary methods. These results set up a criterion for characterizing definiteness and semi-

definiteness of nonlinear matrix-valued functions, and will prompt more investigations on

this challenging topic.

Recall that a Hermitian matrix A can uniquely be decomposed as the difference of two

disjoint Hermitian positive semi-definite definite matrices

A = A1 − A2, A1A2 = A2A1 = 0, A1 < 0, A2 < 0. (70)

Applying this assertion to (2), we obtain the following result.

Corollary 16. Let φ(X) be as given in (2). Then, φ(X) can always be decomposed as

φ(X) = φ1(X)− φ2(X), (71)

where

φ1(X) = (AXB + C )M1(AXB +C)∗ +D1,

φ2(X) = (AXB + C )M2(AXB +C)∗ +D2

satisfy

φ1(X) < 0 and φ2(X) < 0 (72)

for all X ∈ Cp×m.

Proof. Note from (70) that the two Hermitian matrices D and M in (2) can uniquely be

decomposed as

D = D1 −D2, D1D2 = D2D1 = 0, D1 < 0, D2 < 0,

M = M1 −M2, M1M2 = M2M1 = 0, M1 < 0, M2 < 0.

So that both φ1(X) and φ2(X) in (71) are positive matrix-valued functions.
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Corollary 17. Let φ(X) be as given in (2), and suppose thatAXB+C = 0 has a solution,

i.e., R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗), and let N =

[
D A
A∗ 0

]
. Then,

max
X∈Cp×m

r[ φ(X) ] = min{r[A, D ], r(D) + r(BMB∗)} , (73)

min
X∈Cp×m

r[ φ(X) ] = max {2r[A, D ]− r(N ), r(D)− r(BMB∗),

r[A, D ] + i−(D)− i+(BMB∗)− i−(N ),

r[A, D ] + i+(D)− i−(BMB∗)− i+(N )} , (74)

max
X∈Cp×m

i±[ φ(X) ] = min{i±(N ), i±(D) + i±(BMB∗)} , (75)

min
X∈Cp×m

i±[ φ(X) ] = max { r[A, D ] − i∓(N ), i±(D)− i∓(BMB∗)} . (76)

We next solve the two Hermitian quadratic optimization problems in (10), where the

two matrices φ(X̂) and φ(X̃) are called the global maximal and minimal matrices of φ(X)
in (2) in the Löwner partial ordering, respectively.

Corollary 18. Let φ(X) be as given in (2), and let N =

[
D + CMC∗ CMB∗

BMC∗ BMB∗

]
. Then,

there exists an X̂ ∈ Cp×m such that

φ(X) < φ(X̂) (77)

holds for all X ∈ Cp×m if and only if

BMB∗
< 0, R(CMB∗) ⊆ R(A), R(BMC∗) ⊆ R(BMB∗). (78)

In this case, the following hold.

(a) The matrix X̂ ∈ Cp×m satisfying (77) is the solution of the linear matrix equation

AX̂BMB∗ + CMB∗ = 0. (79)

Correspondingly,

X̂ = −A†CMB∗(BMB∗)† + FAV1 + V2EBMB∗, (80)

φ(X̂) = D + CMC∗ − CMB∗(BMB∗)†BMC∗ , (81)

φ(X)− φ(X̂) = (AXB+C )MB∗(BMB∗)†BM(AXB +C )∗, (82)

where V1 and V2 are arbitrary matrices.

(b) The ranks and inertias of φ(X̂) and φ(X)− φ(X̂) are given by

i+[ φ(X̂) ] = i+(N )− r(BMB∗), i−[ φ(X̂) ] = i−(N ), (83)

r[ φ(X̂) ] = r(N )− r(BMB∗), (84)

i+[ φ(X)− φ(X̂) ] = r[ φ(X)− φ(X̂) ] = r(AXBMB∗ +CMB∗ ). (85)
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(c) The matrix X̂ ∈ Cp×m satisfying (77) is unique if and only if

r(A) = p, R(CMB∗) ⊆ R(A), BMB∗ � 0; (86)

under this condition,

X̂ = −A†CMB∗(BMB∗)−1, (87)

φ(X̂) = D +CMC∗ − CMB∗(BMB∗)−1BMC∗, (88)

φ(X)− φ(X̂) = (AXB+ C )MB∗(BMB∗)−1BM(AXB + C )∗. (89)

(d) X̂ = 0 is a solution of (77) if and only if BMB∗ < 0 and CMB∗ = 0. In this case,
φ(0) = D + CMC∗.

(e) X̂ = 0 is the unique solution of (77) if and only if r(A) = p, CMB∗ = 0 and

BMB∗ � 0. In this case, φ(0) = D +CMC∗ .

(f) There exists an X̂ ∈ Cp×m such that

φ(X) < φ(X̂) < 0 (90)

holds for all X ∈ Cp×m if and only if

R(CMB∗) ⊆ R(A) and N < 0. (91)

In this case, the matrix X̂ ∈ Cp×m satisfying (90) is unique if and only if

r(A) = p, R(CMB∗) ⊆ R(A), BMB∗ � 0, N < 0. (92)

Proof. Let

ψ(X) = φ(X) − φ(X̂) = (AXB +C )M(AXB + C)
∗

−
(
AX̂B +C

)
M
(
AX̂B +C

)
∗

.

Then, φ(X) < φ(X̂) is equivalent to ψ(X) < 0. Under A 6= 0, we see from Corollary

13(g) that ψ(X) < 0 holds for all X ∈ Cp×m if and only if

[
CMC∗ −

(
AX̂B + C

)
M
(
AX̂B +C

)∗
CMB∗

BMC∗ BMB∗

]
< 0, (93)

which, by Lemma 6(e), is further equivalent to

BMB∗
< 0, R(BMC∗) ⊆ R(BMB∗), (94)

CMC∗ −
(
AX̂B + C

)
M
(
AX̂B + C

)∗
− CMB∗(BMB∗)†BMC∗

< 0. (95)

In this case, it is easy to verify

CMC∗ −
(
AX̂B + C

)
M
(
AX̂B + C

)∗
−CMB∗(BMB∗)†BMC∗

= −(AX̂BMB∗ + CMB∗ )(BMB∗)†(AX̂BMB∗ +CMB∗ )∗, (96)
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and therefore, the inequality in (95) is equivalent to CMB∗ +AX̂BMB∗ = 0. By Lemma

7, this matrix equation is solvable if and only if R(CMB∗) ⊆ R(A) and R(BMC∗) ⊆

R(BMB∗). In this case, the general solution of the equation is (80) by Lemma 7, and (95)

becomes

CMC∗ −
(
AX̂B +C

)
M
(
AX̂B +C

)∗
−CMB∗(BMB∗)†BMC∗ = 0.

Thus (81) and (82) follow. The results in (b)–(f) follow from (a). Their derivations are left

to the reader.

The following corollary can be shown similarly.

Corollary 19. Let φ(X) be as given in (2), and let N =

[
D + CMC∗ CMB∗

BMC∗ BMB∗

]
. Then,

there exists an X̃ ∈ Cp×m such that

φ(X) 4 φ(X̃) (97)

holds for all X ∈ Cp×m if and only if

BMB∗
4 0, R(CMB∗) ⊆ R(A), R(BMC∗) ⊆ R(BMB∗). (98)

In this case, the following hold.

(a) The matrix X̃ satisfying (97) is the solution of the linear matrix equation

AX̃BMB∗ + CMB∗ = 0. (99)

Correspondingly,

X̃ = −A†CMB∗(BMB∗)† + FAV1 + V2EBMB∗, (100)

φ(X̃) = D + CMC∗ − CMB∗(BMB∗)†BMC∗ , (101)

φ(X)− φ(X̃) = (AXB+C )MB∗(BMB∗)†BM(AXB +C )∗, (102)

where V1 and V2 are arbitrary matrices.

(b) The ranks and inertias of φ(X̃) and φ(X)− φ(X̃) are given by

i+[ φ(X̃) ] = i+(N ), i−[ φ(X̃) ] = i−(N )− r(BMB∗), (103)

r[ φ(X̂) ] = r(N )− r(BMB∗), (104)

i−[ φ(X)− φ(X̃) ] = r[ φ(X)− φ(X̃) ] = r(AXBMB∗ +CMB∗ ). (105)

(c) The matrix X̃ ∈ Cp×m satisfying (97) is unique if and only if

r(A) = p, R(CMB∗) ⊆ R(A), BMB∗ ≺ 0. (106)

In this case,

X̃ = −A†CMB∗(BMB∗)−1, (107)

φ(X̃) = D +CMC∗ − CMB∗(BMB∗)−1BMC∗, (108)

φ(X)− φ(X̃) = (AXB+ C )MB∗(BMB∗)−1BM(AXB + C )∗. (109)
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(d) X̃ = 0 is a solution of (97) if and only if BMB∗ 4 0 and CMB∗ = 0. In this case,
φ(0) = D + CMC∗.

(e) X̃ = 0 is the unique solution of (97) if and only if r(A) = p, CMB∗ = 0 and

BMB∗ ≺ 0. In this case, φ(0) = D +CMC∗ .

(f) There exists an X̃ ∈ Cp×m such that

φ(X) 4 φ(X̃) 4 0 (110)

holds for all X ∈ Cp×m if and only if

R(CMB∗) ⊆ R(A) and N 4 0. (111)

In this case, the matrix X̃ ∈ Cp×m satisfying (110) is unique if and only if

r(A) = p, R(CMB∗) ⊆ R(A), BMB∗ ≺ 0, N 4 0. (112)

4. The Convexity and Concavity of Hermitian Matrix-Valued

Function

As usual, the matrix-valued function φ(X) in (2) is said to be convex if and only if

φ

(
1

2
X1 +

1

2
X2

)
4

1

2
φ(X1) +

1

2
φ(X2) (113)

holds for all X1, X2 ∈ Cp×m; said to be concave if and only if

φ

(
1

2
X1 +

1

2
X2

)
<

1

2
φ(X1) +

1

2
φ(X2) (114)

holds for all X1, X2 ∈ Cp×m. It is easy to verify that

φ

(
1

2
X1 +

1

2
X2

)
−

1

2
φ(X1)−

1

2
φ(X2) = −

1

4
A(X1−X2 )BMB∗(X1−X2 )∗A∗, (115)

which is a special case of (2) as well. Applying Theorem 10 to (115), we obtain the follow-

ing result.

Complimentary Contributor Copy



How to Characterize Properties of General Hermitian Quadratic ... 169

Theorem 20. Let φ(X) be as given in (2) with A 6= 0 and BMB∗ 6= 0. Then,

max
X1 6=X2,X1,X2∈Cp×m

r

[
φ

(
1

2
X1 +

1

2
X2

)
−

1

2
φ(X1) −

1

2
φ(X2)

]

= min{r(A), r(BMB∗)} , (116)

min
X1 6=X2,X1,X2∈Cp×m

r

[
φ

(
1

2
X1 +

1

2
X2

)
−

1

2
φ(X1) −

1

2
φ(X2)

]

=





1 BMB∗ � 0 and r(A) = p

1 BMB∗ ≺ 0 and r(A) = p
0 otherwise

, (117)

max
X1 6=X2,X1,X2∈Cp×m

i+

[
φ

(
1

2
X1 +

1

2
X2

)
−

1

2
φ(X1)−

1

2
φ(X2)

]

= min{r(A), i−(BMB∗)} , (118)

max
X1 6=X2,X1,X2∈Cp×m

i−

[
φ

(
1

2
X1 +

1

2
X2

)
−

1

2
φ(X1)−

1

2
φ(X2)

]

= min{r(A), i+(BMB∗)} , (119)

min
X1 6=X2, X1, X2∈Cp×m

i+

[
φ

(
1

2
X1 +

1

2
X2

)
−

1

2
φ(X1) −

1

2
φ(X2)

]

=

{
1 BMB∗ ≺ 0 and r(A) = p

0 BMB∗ ⊀ 0 or r(A) < p
, (120)

min
X1 6=X2, X1, X2∈Cp×m

i−

[
φ

(
1

2
X1 +

1

2
X2

)
−

1

2
φ(X1) −

1

2
φ(X2)

]

=

{
1 BMB∗ � 0 and r(A) = p

0 BMB∗ � 0 or r(A) < p
. (121)

In consequence, the following hold.

(a) There exist X1, X2 ∈ Cp×m with X1 6= X2 such that φ
(

1

2
X1 + 1

2
X2

)
− 1

2
φ(X1) −

1

2
φ(X2) is nonsingular if and only if both r(A) = n and r(BMB∗) < n.

(b) There exist X1, X2 ∈ Cp×m with X1 6= X2 such that φ
(

1

2
X1 + 1

2
X2

)
= 1

2
φ(X1) +

1

2
φ(X2) if and only if BMB∗ � 0 and BMB∗ ⊀ 0, or r(A) < p.

(c) There exist X1, X2 ∈ Cp×m with X1 6= X2 such that φ
(

1

2
X1 + 1

2
X2

)
� 1

2
φ(X1) +

1

2
φ(X2) if and only if both BMB∗ ≺ 0 and r(A) = n.

(d) There exist X1, X2 ∈ Cp×m with X1 6= X2 such that φ
(

1

2
X1 + 1

2
X2

)
≺ 1

2
φ(X1) +

1

2
φ(X2) if and only if both BMB∗ � 0 and r(A) = n.

(e) There exist X1, X2 ∈ Cp×m with X1 6= X2 such that φ
(

1

2
X1 + 1

2
X2

)
<

1

2
φ(X1) +

1

2
φ(X2) if and only if either BMB∗ � 0 or r(A) < p.

(f) There exist X1, X2 ∈ Cp×m with X1 6= X2 such that φ
(

1

2
X1 + 1

2
X2

)
4

1

2
φ(X1) +

1

2
φ(X2) if and only if either BMB∗ ⊀ 0 or r(A) < p.

(g) φ
(

1

2
X1 + 1

2
X2

)
<

1

2
φ(X1) + 1

2
φ(X2) for allX1, X2 ∈ Cp×m with X1 6= X2 if and

only if BMB∗ 4 0.
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(h) φ
(

1

2
X1 + 1

2
X2

)
4

1

2
φ(X1) + 1

2
φ(X2) for allX1, X2 ∈ Cp×m with X1 6= X2 if and

only if BMB∗ < 0.

(i) If φ(X) is a positive semi-definite matrix-valued function, then φ(X) is convex.

(j) If φ(X) is a negative semi-definite matrix-valued function, then φ(X) is concave.

5. Two Types of Multiple HQMVF

As an extension of (2), we may construct a multiple Hermitian quadratic matrix-valued

function as follows

φ(X1, . . . , Xk ) =

(
k∑

i=1

AiXiBi + C

)
M

(
k∑

i=1

AiXiBi + C

)∗
+D, (122)

where 0 6= Ai ∈ Cn×pi , Bi ∈ Cmi×q, C ∈ Cn×q , D ∈ Cn
H and M ∈ C

q
H

are given,
and Xi ∈ Cpi×mi is a variable matrix, i = 1, . . . , k. We treat it as a combined non-

homogeneous linear and quadratic Hermitian matrix-valued functions φ = τ ◦ ψ:

ψ : Cp1×m1 ⊕ · · · ⊕ Cpk×mk → Cn×q , τ : Cn×q → Cn
H.

Because more independent variable matrices occur in (122), the author fails to establish

analytical formulas for calculating the extremal ranks and inertias of (122). In this section,

we only consider the following two problems on the semi-definiteness and optimization in

the Löwner sense of (122):

(i) establish necessary and sufficient conditions for φ(X1, . . . , Xk ) < 0

( φ(X1, . . . , Xk ) 4 0 ) to hold for all X1, . . . , Xk;

(ii) establish necessary and sufficient conditions for the existence of X̂1, . . . , X̂k and

X̃1, . . . , X̃k such that

φ(X1, . . . , Xk ) < φ( X̂1, . . . , X̂k ), φ(X1, . . . , Xk ) 4 φ( X̃1, . . . , X̃k ) (123)

hold for all X1, . . . , Xk in the Löwner partial ordering, respectively, and give analyt-

ical expressions of X̂1, . . . , X̂k and X̃1, . . . , X̃k.

Theorem 21. Let φ(X1, . . . , Xk ) be as given in (122), and define B∗ = [B∗
1 , . . . , B

∗
k ].

Also let

N =

[
D + CMC∗ CMB∗

BMC∗ BMB∗

]
. (124)

Then, the following hold.

(a) φ(X1, . . . , Xk) < 0 for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if N < 0.

(b) φ(X1, . . . , Xk ) 4 0 for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if N 4 0.
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(c) There exist X̂1, . . . , X̂k such that

φ(X1, . . . , Xk) < φ(X̂1, . . . , X̂k) (125)

holds for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if

BMB∗
< 0, R(BMC∗) ⊆ R(BMB∗). (126)

In this case, the matrices X̂1, . . . , X̂k are the solutions of the linear matrix equation

k∑

i=1

AiX̂iBiMB∗ = −CMB∗ . (127)

Correspondingly,

φ( X̂1, . . . , X̂k ) = D +CMC∗ −CMB∗(BMB∗)†BMC∗, (128)

φ(X1, . . . , Xk) − φ( X̂1, . . . , X̂k )

=

(
k∑

i=1

AiXiBi + C

)
MB∗(BMB∗)†BM

(
k∑

i=1

AiXiBi +C

)∗
. (129)

(d) There exist X̃1, . . . , X̃k such that

φ(X1, . . . , Xk) 4 φ( X̃1, . . . , X̃k ) (130)

holds for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if

BMB∗
4 0, R(BMC∗) ⊆ R(BMB∗). (131)

In this case, the matrices X̃1, . . . , X̃k are the solutions of the linear matrix equation

k∑

i=1

AiX̃iBiMB∗ = −CMB∗ . (132)

Correspondingly,

φ( X̃1, . . . , X̃k) = D +CMC∗ − CMB∗(BMB∗)†BMC∗, (133)

φ(X1, . . . , Xk) − φ(X̃1, . . . , X̃k )

=

(
k∑

i=1

AiXiBi + C

)
MB∗(BMB∗)†BM

(
k∑

i=1

AiXiBi + C

)∗
. (134)

Proof. Rewrite (122) as

φ(X1, . . . , Xk)

=

(
A1X1B1 +

k∑

i=2

AiXiBi + C

)
M

(
A1X1B1 +

k∑

i=2

AiXiBi + C

)∗
+D, (135)
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and applying Corollary 18 to it, we see that φ(X1, . . . , Xk) < 0 for all X1 ∈ Cp1×m1 if

and only if

[
D 0
0 0

]
+

[∑k
i=2 AiXiBi +C

B1

]
M

[∑k
i=2 AiXiBi +C

B1

]∗
< 0 (136)

for all X2 ∈ Cp2×m2 , . . . , Xk ∈ Cpk×mk . Note that

[
D 0
0 0

]
+

[∑k
i=2

AiXiBi + C

B1

]
M

[∑k
i=2

AiXiBi +C

B1

]∗

=

[
D 0
0 0

]
+

(
k∑

i=2

[
Ai

0

]
XiBi +

[
C
B1

])
M

(
k∑

i=2

[
Ai

0

]
XiBi +

[
C
B1

])∗
. (137)

Applying Corollary 18, we see that this matrix is positive semi-definite for allX2 ∈ Cp2×m2

if and only if



D 0 0
0 0 0

0 0 0


 +



∑k

i=3

[
Ai

0

]
XiBi +

[
C
B1

]

B2


M



∑k

i=3

[
Ai

0

]
XiBi +

[
C
B1

]

B2



∗

< 0

(138)

for all X3 ∈ Cp3×m3 , . . . , Xk ∈ Cpk×mk . Thus, we obtain by induction that

φ(X1, . . . , Xk) < 0 for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if




D + CMC∗ CMB∗
1 . . . CMB∗

k

B1MC∗ B1MB∗
1 . . . B1MB∗

k
...

...
. . .

...

BkMC∗ BkMB∗
1 · · · BkMB∗

k


 =

[
D +CMC∗ CMB∗

BMC∗ BMB∗

]
< 0,

establishing (a).

Let

ρ(X1, . . . , Xk) = φ(X1, . . . , Xk) − φ(X̂1, . . . , X̂k)

=

(
k∑

i=1

AiXiBi +C

)
M

(
k∑

i=1

AiXiBi + C

)∗

−

(
k∑

i=1

AiX̂iBi +C

)
M

(
k∑

i=1

AiX̂iBi +C

)∗
. (139)

Then, φ(X1, . . . , Xk) < φ(X̂1, . . . , X̂k) for allX1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk is equiv-

alent to

ρ(X1, . . . , Xk) < 0 for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk . (140)

From (a), (140) holds if and only if

[
−
(∑k

i=1 AiX̂iBi + C
)
M
(∑k

i=1 AiX̂iBi + C
)∗

+ CMC∗ CMB∗

BMC∗ BMB∗

]
< 0, (141)
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which, by (93)–(95), is further equivalent to

BMB∗
< 0, R(BMC∗) ⊆ R(BMB∗), (142)

CMC∗ −

(
k∑

i=1

AiX̂iBi + C

)
M

(
k∑

i=1

AiX̂iBi +C

)∗

−CMB∗(BMB∗)†BMC∗
< 0.

(143)

In this case,

CMC∗ −

(
k∑

i=1

AiX̂iBi +C

)
M

(
k∑

i=1

AiX̂iBi +C

)∗

− CMB∗(BMB∗)†BMC∗

= −

(
k∑

i=1

AiX̂iBi + C

)
MB∗(BMB∗)†BM

(
k∑

i=1

AiX̂iBi +C

)∗

(144)

holds, and therefore, (143) is equivalent to CMB∗ +
∑k

i=1 AiX̂iBiMB∗ = 0. This is

a general two-sided linear matrix equation involving k unknown matrices. The existence

of solutions of this equation and its general solution can be derived from the Kronecker

product of matrices. The details are omitted here. Result (d) can be shown similarly.

Two consequences of Theorem 21 are given below.

Corollary 22. Let

ψ(X1, . . . , Xk ) =

k∑

i=1

(AiXiBi +Ci )Mi(AiXiBi +Ci )∗ +D, (145)

where 0 6= Ai ∈ Cn×pi , Bi ∈ Cmi×qi , C ∈ Cn×qi , D ∈ Cn
H and Mi ∈ C

qi

H
are given, and

Xi ∈ Cpi×mi is a variable matrix, i = 1, . . . , k. Also define

B = diag(B1, . . . , Bk ), C = [C1, . . . , Ck ],

M = diag(M1, . . . ,Mk ), N =

[
D + CMC∗ CMB∗

BMC∗ BMB∗

]
.

Then, the following hold.

(a) ψ(X1, . . . , Xk) < 0 for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if N < 0.

(b) ψ(X1, . . . , Xk) 4 0 for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if N 4 0.

(c) There exist X̂1, . . . , X̂k such that

ψ(X1, . . . , Xk) < ψ( X̂1, . . . , X̂k) (146)

holds for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if

BiMiB
∗
i < 0, R(BiMiC

∗
i ) ⊆ R(BiMiB

∗
i ), i = 1, . . . , k. (147)
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In this case, the matrices X̂1, . . . , X̂k satisfying (146) are the solutions of the k linear

matrix equations

AiX̂iBiMiB
∗
i = −CiMiB

∗
i , i = 1, . . . , k. (148)

Correspondingly,

ψ( X̂1, . . . , X̂k) = D +

k∑

i=1

CiMiC
∗
i −

k∑

i=1

CiMiB
∗(BiMiB

∗
i )†BiMiC

∗
i , (149)

ψ(X1, . . . , Xk) − ψ( X̂1, . . . , X̂k)

=

k∑

i=1

(AiXiBi + Ci )MiB
∗
i (BiMiB

∗
i )†BiMi (AiXiBi + Ci )∗ . (150)

(d) There exist X̃1, . . . , X̃k such that

ψ(X1, . . . , Xk) 4 ψ( X̃1, . . . , X̃k) (151)

holds for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if

BiMiB
∗
i 4 0, R(BiMiC

∗
i ) ⊆ R(BiMiB

∗
i ), i = 1, . . . , k. (152)

In this case, the matrices X̃1, . . . , X̃k satisfying (151) are the solutions of the k linear

matrix equations

AiX̃iBiMiB
∗
i = −CiMiB

∗
i , i = 1, . . . , k. (153)

Correspondingly,

ψ(X̃1, . . . , X̃k) = D +

k∑

i=1

CiMiC
∗
i −

k∑

i=1

CiMiB
∗(BiMiB

∗
i )†BiMiC

∗
i , (154)

ψ(X1, . . . , Xk) − ψ(X̃1, . . . , X̃k)

=

k∑

i=1

(AiXiBi +Ci )MiB
∗
i (BiMiB

∗
i )†BiMi (AiXiBi +Ci )∗ . (155)

Proof. Rewrite (145) as

ψ(X1, . . . , Xk)

= [A1X1B1 + C1, . . . , AkXkBk + Ck]M [A1X1B1 +C1, . . . , AkXkBk +Ck]∗ +D

= [A1X1[B1, . . . , 0 ] + · · ·+AkXk[ 0, . . . , Bk ] + [C1, . . . , Ck ]]M

× [A1X1[B1, . . . , 0 ] + · · ·+AkXk[ 0, . . . , Bk ] + [C1, . . . , Ck ]]∗ +D, (156)

which a special case of (122). Applying Theorem 21 to it, we obtain the result required.
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Corollary 23. Let

ψ(X1, . . . , Xk)

= [A1X1B1 +C1, . . . , AkXkBk +Ck ]M [A1X1B1 + C1, . . . , AkXkBk + Ck ]∗

+D, (157)

where 0 6= Ai ∈ Cn×pi , Bi ∈ Cmi×qi , Ci ∈ Cn×qi , D ∈ Cn
H

and M ∈ C
q1+···+qk

H
are

given, and Xi ∈ Cpi×mi is variable matrix, i = 1, . . . , k. Also define

B = diag(B1, . . . , Bk ) and C = [C1, . . . , Ck ], N =

[
D + CMC∗ CMB∗

BMC∗ BMB∗

]
.

Then, the following hold.

(a) ψ(X1, . . . , Xk) < 0 for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if N < 0.

(b) ψ(X1, . . . , Xk) 4 0 for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if N 4 0.

(c) There exist X̂1, . . . , X̂k such that

ψ(X1, . . . , Xk) < ψ( X̂1, . . . , X̂k) (158)

holds for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if

BMB∗
< 0, R(BMC∗) ⊆ R(BMB∗). (159)

In this case, the matrices X̂1, . . . , X̂k satisfying (158) are the solutions of the linear

matrix equation
k∑

i=1

AiX̂iBiMB∗ = −CMB∗ . (160)

Correspondingly,

ψ( X̂1, . . . , X̂k) = D + CMC∗ −CMB∗(BMB∗)†BMC∗, (161)

ψ(X1, . . . , Xk) − ψ( X̂1, . . . , X̂k)

= [A1X1B1 +C1, . . . , AkXkBk +Ck ]MB∗(BMB∗)†BM

× [A1X1B1 +C1, . . . , AkXkBk +Ck ]∗ . (162)

(d) There exist X̃1, . . . , X̃k such that

ψ(X1, . . . , Xk) 4 ψ( X̃1, . . . , X̃k) (163)

holds for all X1 ∈ Cp1×m1 , . . . , Xk ∈ Cpk×mk if and only if

BMB∗
4 0, R(BMC∗) ⊆ R(BMB∗). (164)

In this case, the matrices X̃1, . . . , X̃k satisfying (163) are the solutions of the linear

matrix equation
k∑

i=1

AiX̃iBiMB∗ = −CMB∗ . (165)
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Correspondingly,

ψ(X̃1, . . . , X̃k) = D +CMC∗ − CMB∗(BMB∗)†BMC∗, (166)

ψ(X1, . . . , Xk) − ψ(X̃1, . . . , X̃k)

= [A1X1B1 +C1, . . . , AkXkBk +Ck ]MB∗(BMB∗)†BM

× [A1X1B1 +C1, . . . , AkXkBk +Ck ]∗ . (167)

Proof. Rewrite (157) as

ψ(X1, . . . , Xk)

= [A1X1B1 +C1, . . . , AkXkBk +Ck]M [A1X1B1 +C1, . . . , AkXkBk +Ck]∗ +D

= (A1X1[B1, . . . , 0 ] + · · ·+AkXk[ 0, . . . , Bk ] + [C1, . . . , Ck ])M

× (A1X1[B1, . . . , 0 ] + · · ·+ AkXk[ 0, . . . , Bk ] + [C1, . . . , Ck ])∗ +D, (168)

which a special case of (122). Applying Theorem 21 to it, we obtain the result required.

Many consequences can be derived from the results in this section. For instance,

(i) the semi-definiteness and optimization in the Löwner partial ordering of the following

constrained HQMVF

φ(X) = (AXB + C )M(AXB + C)∗ +D s.t. PXQ = R

can be derived;

(ii) the semi-definiteness and optimization in the Löwner partial ordering of the following

matrix expressions that involve partially specified matrices

[
A B
C ?

]
M

[
A B
C ?

]∗
+N,

[
? B
C ?

]
M

[
? B
C ?

]∗
+N,

[
A ?
? ?

]
M

[
A ?
? ?

]∗
+N

can be derived, in particular, necessary and sufficient conditions can be derived for

the following inequalities

[
A B

C ?

][
A B

C ?

]∗
4 I,

[
? B

C ?

][
? B

C ?

]∗
4 I,

[
A ?

? ?

][
A ?

? ?

]∗
4 I

to always hold in the Löwner partial ordering.

6. Some Optimization Problems on the Matrix Equation

AXB = C

Consider the following linear matrix equation

AXB = C, (169)

where A ∈ Cm×n, B ∈ Cp×q and C ∈ Cm×q are given, and X ∈ Cn×p is an unknown

matrix. Eq. (169) is one of the best known matrix equations in matrix theory. Many papers
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on this equation and its applications can be found in the literature. In the Penrose’s seminal

paper [14], the consistency conditions and the general solution of (169) were completely

derived by using generalized inverse of matrices. If (169) is not consistent, people often

need to find its approximation solutions under various optimal criteria, in particular, the

least-squares criterion is ubiquitously used in optimization problems which almost always

admits an explicit global solution. For (169), the least-squares solution is defined to be a

matrix X ∈ Cn×p that minimizes the quadratic objective function

trace [ (C − AXB )(C −AXB )∗ ] = trace [ (C − AXB )∗(C − AXB ) ]. (170)

The normal matrix equation corresponding to (170) is given by

A∗AXBB∗ = A∗CB∗, (171)

which is always consistent, and the following result is well known.

Lemma 24. The general least-squares solution of (169) can be written as

X = A†CB† + FAV1 + V2EB, (172)

where V1, V2 ∈ Cn×p are arbitrary.

Let

φ1(X) = (C −AXB )(C −AXB )∗, φ2(X) = (C −AXB )∗(C −AXB ) (173)

be the two HQMVFs in (170). Note that

r[φ1(X)] = r[φ2(X)] = r(C −AXB ). (174)

Hence, we first obtain the following result from Lemma 8.

Theorem 25. Let φ1(X) and φ2(X) be as given in (173). Then,

max
X∈Cn×p

r[φ1(X)] = max
X∈Cn×p

r[φ2(X)] = max
X∈Cn×p

r(C −AXB )

= min

{
r[A, C ], r

[
B

C

]}
, (175)

min
X∈Cn×p

r[φ1(X)] = min
X∈Cn×p

r[φ2(X)] = min
X∈Cn×p

r(C −AXB )

= r[A, C ] + r

[
B
C

]
− r

[
C A
B 0

]
. (176)

Applying Theorem 10 to (173), we obtain the following result.

Theorem 26. Let φ1(X) and φ2(X) be as given in (173). Then, the following hold.

(a) There exists an X̂ ∈ Cn×p such that φ1(X) < φ1(X̂) holds for all X ∈ Cn×p if and

only if

R(CB∗) ⊆ R(A). (177)

In this case,

X̂ = A†CB† + FAV1 + V2EB, φ1(X̂) = CC∗ −CB†BC∗ , (178)

where V1, V2 ∈ Cn×p are arbitrary.
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(b) There exists an X̂ ∈ Cn×p such that φ2(X) < φ2(X̂) holds for all X ∈ Cn×p if and

only if

R(C∗A) ⊆ R(B∗). (179)

In this case,

X̂ = A†CB† + FAV1 + V2EB, φ2(X̂) = C∗C − C∗AA†C, (180)

where V1, V2 ∈ Cn×p are arbitrary.

Theorem 26 also motivates us to obtain the following consequence.

Theorem 27. Let A ∈ Cm×n, B ∈ Cp×q and C ∈ Cm×q be given. Then, there always

exists an X ∈ Cn×p such that

min
<

{
A∗(C − AXB )(C −AXB )∗A : X ∈ Cn×p

}
, (181)

min
<

{
B(C −AXB )∗(C − AXB )B∗ : X ∈ Cn×p

}
(182)

hold, simultaneously, and the general solution is given by

argmin
<

{
A∗(C −AXB )(C − AXB )∗A : X ∈ Cn×p

}

= argmin
<

{
B(C −AXB )∗(C −AXB )B∗ : X ∈ Cn×p

}

= argmin
X∈Cn×p

tr [ (C −AXB )(C − AXB )∗ ]

= A†CB† + FAV1 + V2EB, (183)

where V1 and V2 are arbitrary matrices, namely, the solutions of the three minimization

problems in (183) are the same.

For (169), the weighted least-squares solutions with respect to positive semi-define ma-

trices M and N are defined to be matrices X ∈ Cn×p that satisfy

trace [ (C − AXB )M(C −AXB )∗ ] = min, (184)

trace [ (C − AXB )∗N (C −AXB ) ] = min, (185)

respectively. In this case, the two HQMVFs in (184) and (185) are

φ1(X) = (C − AXB )M(C −AXB )∗, φ2(X) = (C −AXB )∗N (C −AXB ).
(186)

Hence, the theory on the ranks and inertias of φ1(X) and φ2(X) can be established rou-

tinely.

Recall that the least-squares solution of a linear matrix equation is defined by minimiz-

ing the trace of certain HQMVF. For example, the least-squares solution of the well-known

linear matrix equation

AXB + CY D = E, (187)
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where A, B, C, D are given, are two matrices X and Y such that

trace [ (E − AXB −CY D )(E − AXB −CY D )∗ ]

= trace [ (E − AXB −CY D )∗(E −AXB −CY D ) ] = min .

Correspondingly, solutions to the Löwner partial ordering minimization problems of the

two HQMVFs

(E−AXB−CY D )(E−AXB−CY D )∗, (E−AXB−CYD )∗(E−AXB−CY D )

can be derived from Theorem 21.

7. Concluding Remarks

We established in this chapter a group of explicit formulas for calculating the global

maximal and minimal ranks and inertias of (2) when X runs over the whole matrix space.

By taking these rank and inertia formulas as quantitative tools, we characterized many alge-

braic properties of (2), including solvability conditions for some nonlinear matrix equations

and inequalities generated from (2), and analytical solutions to the two well-known classic

optimization problems on the φ(X) in the Löwner partial ordering. The results obtained

and the techniques adopted for solving the matrix rank and inertia optimization problems

enable us to make new extensions of some classic results on quadratic forms, Hermitian

quadratic matrix equations and Hermitian quadratic matrix inequalities, and to derive many

new algebraic properties of nonlinear matrix functions that can hardly be handled before.

As a continuation of this work, we mention some research problems on HQMVFs for fur-

ther consideration.

(i) Characterize algebraic and topological properties of generalized Stiefel manifolds

composed by the collections of all matrices satisfying (32)–(35).

(ii) The difference of (2) at two given matrices X, X + ∆X ∈ Cp×m:

φ(X + ∆X)− φ(X)

is homogenous with respect to ∆X . Hence, we can add a restriction on its norm,

for instance, ‖∆X‖ =
√

tr[(∆X)(∆X)∗] < δ. In this case, establish formulas for

calculating the maximal and minimal ranks and inertias of the difference with respect

to ∆X 6= 0, and use them to analyze behaviors of φ(X) nearby X . Also note that

any matrix X = (xij)p×m can be decomposed as X =
∑p

i=1

∑m
j=1 xijeij. A precise

analysis on the difference is to take ∆X = λeij and to characterize behaviors of the

difference by using the corresponding rank and inertia formulas.

(iii) Denote the real and complex parts of (2) as φ(X) = φ0(X) + iφ1(X), where

φ0(X) and φ1(X) are two real quadratic matrix-valued functions satisfying

φT
0 (X) = φ0(X) and φT

1 (X) = −φ1(X), where (·)T means the transpose of a

matrix. In this case, establish formulas for calculating the maximal and minimal

ranks and inertias of φ0(X) and φ1(X), and use them to characterize behaviors of

φ0(X) and φ1(X).
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(iv) Partition φ(X) in (2) as

φ(X) =

[
φ11(X) φ12(X)

φ∗12(X) φ22(X)

]
.

In this case, establish formulas for calculating the maximal and minimal ranks and

inertias of the submatrices φ11(X) and φ22(X) with respect to X , and utilize them

to characterize behaviors of these submatrices.

(v) Most criteria related to vector and matrix optimizations are constructed via traces of

matrices. An optimization theory for (2) can also be established by taking the trace

of (2) as an objective function. In such a case, it would be of interest to characterize

relations between the two optimization theories for (2) derived from the trace and the

Löwner partial ordering.

(vi) Establish formulas for calculating the extremal ranks and inertias of

(AXB + C )M(AXB +C)∗ +D s.t. r(X) 6 k,

where k 4 min{ p, m }. This rank-constrained matrix-valued function is equivalent

to the following biquadratic matrix-valued function

(AY ZB + C )M(AY ZB +C)∗ +D, Y ∈ Cp×k, Z ∈ Ck×m.

Some previous results on positive semi-definiteness of biquadratic forms can be

found in [6,12].

(vii) Establish formulas for calculating the maximal and minimal ranks and inertias of

(AXB +C )M(AXB + C)∗ +D s.t. PX = Q and/or XR = S.

This task could be regarded as extensions of classic equality-constrained quadratic

programming problems.

(viii) For two given HQMVFs

φi(X) = (AiXBi + Ci )M(AiXBi +Ci)
∗ +Di, i = 1, 2

of the same size, establish necessary and sufficient conditions for φ1(X) ≡ φ2(X)

to hold.

(ix) Note from (36) and (37) that the HQMVF in (2) is embed into the congruence trans-

formation for a block Hermitian matrix consisting of the given matrices. This fact

prompts us to construct some general nonlinear matrix-valued functions that can be

embed in congruence transformations for block Hermitian matrices, for instance,




Im1
0 0

B1X1 Im2
0

B2X2B1X1 B2X2 Im3





A11 A12 A13

A∗
12 A22 A23

A∗
13 A∗

23 A33





Im1

X∗
1B

∗
1 X∗

1B
∗
1X

∗
2B

∗
2

0 Im2
X∗

2B
∗
2

0 0 Im3




=



∗ ∗ ∗

∗ ∗ ∗
∗ ∗ φ(X1, X2 )


,
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where

φ(X1, X2 ) = [B2X2B1X1, B2X2, Im3
]



A11 A12 A13

A∗
12 A22 A23

A∗
13 A∗

23 A33





X∗

1B
∗
1X

∗
2B

∗
2

X∗
2B

∗
2

Im3


,

which is a special case of the following nonlinear matrix-valued function

φ(X1, X2)

= (A1X1B1 +C1 ) (A2X2B2 + C2 )M(A2X2B2 +C2)
∗ (A1X1B1 + C1 )∗

+D.

In these cases, it would be of interest to establish possible formulas for calcu-

lating the extremal ranks and inertias of these nonlinear matrix-valued functions

(biquadratic matrix-valued functions), in particular, to find criteria of identifying

semi-definiteness of these nonlinear matrix-valued functions, and to solve the

Löwner partial ordering optimization problems.

(x) Two special forms of (122) and (145) by settingX1 = · · · = Xk = X are

(
k∑

i=1

AiXBi +C

)
M

(
k∑

i=1

AiXBi + C

)∗

+D,

k∑

i=1

(AiXBi +Ci )Mi(AiXBi + Ci )∗ +D.

In this case, find criteria for the HQMVFs to be semi-definite, and solve for their

global extremal matrices in the Löwner partial ordering.

(xi) Many expressions that involve matrices and their generalized inverses can be repre-

sented as quadratic matrix-valued functions, for instance,

D−B∗A∼
r B, A−BB−A(BB−)∗, A−BB−A−A(BB−)∗ +BB−A(BB−)∗.

In these cases, it would be of interest to establish formulas for calculating the max-

imal and minimal ranks and inertias of these matrix expressions with respect to the

reflexive Hermitian g-inverse A∼
r of a Hermitian matrix A, and g-inverse B− of

B. Some recent work on the ranks and inertias of the Hermitian Schur complement

D −B∗A∼B and their applications was given in [18,21].

Since linear algebra is a successful theory with essential applications in most scientific

fields, the methods and results in matrix theory are prototypes of many concepts and

content in other advanced branches of mathematics. In particular, matrix functions,

matrix equalities and matrix inequalities in the Löwner partial ordering, as well as

generalized inverses of matrices were sufficiently extended to their counterparts for

operators in a Hilbert space, or elements in a ring with involution, and their algebraic

properties were extensively studied in the literature. In most cases, the conclusions on

the complex matrices and their counterparts in general algebraic settings are analogous.
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Also, note that the results in this chapter are derived from ordinary algebraic operations

of the given matrices and their generalized inverses. Hence, it is no doubt that most of

the conclusions in this chapter can trivially be extended to the corresponding equations

and inequalities for linear operators on a Hilbert space or elements in a ring with involution.
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Chapter 6

INTRODUCTION TO THE THEORY

OF TRIANGULAR MATRICES (TABLES)
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Abstract

We consider elements of linear algebra based on triangular tables with entries in some

number field and their functions, analogical to the classical notions of a matrix, deter-

minant and permanent. Some properties are investigated and applications in various

areas of mathematics are given.

Keywords: Triangular matrix, determinant, paradeterminant, permanent, parapermanent,

Polya transformation, linear recurrent equations, power series

AMS Subject Classification: 15A15

1. Preface

It is difficult to overestimate the role of matrix theory and matrix method in different

branches of mathematics. But in mathematics, it becomes necessary quite often to oper-

ate not only with rectangular tables, but also with tables of numbers of a different kind.

Therefore, by matrices we mean tables of numbers of any form. In particular, the main

”characters” of the chapter are special tables (which, for lack of a better term, will be called

triangular matrices. As there are no ordinary triangular matrices in the chapter, there will

be no misunderstanding) and their functions – paradeterminants and parapermanents, which

are some analogs of the determinant and permanent of square matrices.

The paradeterminants and parapermanents of triangular matrices of the n-th order are

also multilinear polynomials of the elements of these matrices, but with
n(n+1)

2 variables

and 2n−1 summands. Consequently, one could expect that the paradeterminants of the n-th

∗E-mail address: romazz@rambler.ru
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order are related to the determinants of special matrices of the n-th order. Theorem 5.3

validates this hypothesis.

The summation of summands in the paradeterminant is over the set of ordered partitions

of an integer n into natural summands, which made it possible to write it as a triangular

matrix. Accordingly, it got new properties, which are well suited for analysis of problems

with linear recurrence relations and partitions.

It should also be noted that paradeterminants and determinants are in fruitful collabo-

ration, which allows finding new properties of both functions. For instance, it gives partial

solution of Polya’s problem on reduction of the permanent of the square matrix to its equal

determinant of the respective transformed square matrix.

The chapter is organized as follows.

Definitions of functions of triangular matrices are based on the combinatorial notions.

In Section 2 we establish the combinatorial notions required for the construction of trian-

gular matrix functions.

In Section 3, we give definitions of triangular matrices and parafunctions of triangular

matrices, and operations with triangular matrices. We obtain an inverse triangular matrix

and consider a paradeterminant product of triangular matrices and a scalar product of vector

by parafunction.

We establish properties of parafunctions of triangular matrices In Section 4, and rela-

tions of parafunctions with other functions of matrices in Section 5.

Some theorems on applying triangular matrix calculus are considered in Section 6.

Facts set forth in Sections 2 were partly published in [1–4], in Section 3 and 4 were

published in [5–9], in Sections 5 were published in [10–12], and in Sections 6 were partly

published in [13,14]

2. Combinatorial Preliminaries

Basic combinatorial notions, which give rise to the notions of the determinant and the

permanent [15] of a square matrix are the notions of permutation and transversal1. More

precisely, the determinant and the permanent of a square matrix are defined as follows2. Let

A =











a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

an1 an2 · · · ann











. (2.1)

The permanent and the determinant of the square matrix (2.1) are, respectively, the

numbers

per A =
∑

ϕ∈Sn

ai11ai22 · . . . · ainn,

1The transversal of a square matrix is a tuple of elements taken by one at a time from each row and each

column of the matrix.
2The permanent can be defined for any rectangular matrix. In order to compare the definitions of determi-

nant and permanent, however, we consider only the permanent of a square matrix.
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det A =
∑

ϕ∈Sn

signϕ ai11ai22 · . . . · ainn,

where Sn is the set of all permutations ϕ =
(1 2 ... n
i1i2... in

)

, of order n, and sign ϕ is the sign of

the permutation3 ϕ.

Note that there is also an axiomatic approach to the definition of determinants (see, for

instance, [16,17]).

Analogous functions of triangular matrices, which are the subject of this chapter, are

based on the combinatorial notions of an ordered partition of a positive integer n into pos-

itive integer summands and monotransversals 4. In the construction of triangular matrix

functions, the sets Ξ(n) are also important. We turn our close attention to these and other

combinatorial notions.

2.1. Multisets

In discrete mathematics, there are problems focusing on collections of objects, which

may include identical ones. In this case, the language of the Cantor Set Theory presents

certain difficulties and inconveniences. Since the mid-20th century, the notion of a multiset

has become more and more significant in this context.

Definition 2.1. A multiset A is an unordered tuple of elements of some set [A]. A set [A] is

called a basis of a multiset A.

Definition 2.2. If a multiset A consists of k1 elements a1, k2 elements a2, . . . , kn elements

an, then it is said that this multiset has primary specification

S(A) = [ak1

1 , ak2

2 , . . . , akn
n ] (2.2)

The multiset A can then be written in its canonical form

A = {ak1

1 , ak2

2 , . . . , akn
n }. (2.3)

Numbers ki, i = 1, 2, . . . , n, are exponents of the primary specification of A.

The primary specification of the multiset of exponents

{k1, k2, . . . , kn}

of the primary specification of the multiset(2.3), is called the secondary specification of this

multiset and is denoted by

S(S(A)) = [[1λ1, 2λ2, . . . , mλm]],

and numbers λi, i = 1, 2, . . . , m are exponents of the secondary specification of A.

3In algebra it is proved that each permutation decomposes uniquely into a product of independent cycles.

The number n−r, where n is the order of the permutation, and r is the number of cycles, is called the decrement

of the permutation. The set of permutations of order n is divided into even and odd permutations. The evenness

of the permutation coincides with the evenness of its decrement.
4See the definition 3.4 on p. 198
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As the elements of a multiset are unordered, then, without losing generality, we can

assume that the exponents of its primary specification satisfy the inequality

k1 ≥ k2 ≥ . . . ≥ kn. (2.4)

If

k1 = k2 = . . . = kn = 1,

then the multiset (2.3) becomes an ordinary set.

The number of all the elements of a multiset A is called its cardinality and denoted by

|A|. It is evident that the cardinality of the multiset (2.3) equals

|A| = k1 + k2 + . . . + kn.

2.2. Partitions

There is hardly any area of knowledge where it would not be necessary to classify

objects by some criteria. Classification like this usually leads to partition of some set into

equivalence classes. That is precisely why much time and effort of different mathematicians

have been devoted to the study of partitions.

This section covers some aspects of the theory of partition of positive integers into

natural numbers. This aspect of the general partition theory has long been stimulated by a

great number of problems of combinatorial and number-theoretic nature and, therefore, is

well developed.

Definition 2.3. Let Ω be the set where an associative and commutative operation ⊕ is

defined (i.e., Ω with an operation ⊕ is a commutative semigroup). An m-partition of an

element ω ∈ Ω is the set

{ω1, ω2, . . . , ωm}, ωi ∈ Ω,

the elements of which satisfy

ω1 ⊕ ω2 ⊕ . . .⊕ ωm = ω. (2.5)

If the order of the elements ω1, ω2, . . . , ωm in the partition (2.5) is important, then this m-

partition is called an ordered m-partition of ω, or an m-composition of ω and is denoted

by

(ω1, ω2, . . . , ωm).

Let us denote the set of all ordered and unordered m-partitions of ω by Cm(ω,⊕) and

Pm(ω,⊕) respectively and set

C(ω,⊕) =
⋃

m≥1

Cm(ω,⊕) P (ω,⊕) =
⋃

m≥1

Pm(ω,⊕)

If Ω = N and ⊕ are ordinary addition, then Cm(n, +) and Pm(n, +) are respectively

the sets of all ordered and unordered partitions of a positive integer n into m positive in-

teger summands, and the sets C(n, +) and P (n, +) are sets of all ordered and unordered

partitions of the same number into any quantity of positive integer summands.

A partition of a positive integer into an unordered sum of positive integer summands

may be regarded as the multiset of these summands.
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Example 2.1. Let us construct the set of all ordered partitions of the number 4 into positive

integer summands:

C(4, +) =

= {(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1)}.

C2(4, +) = {(3, 1), (1, 3), (2, 2)}.

Example 2.2.

P (4, +) = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}.

P4(9, +) = {{6, 1, 1, 1}, {5, 2, 1, 1}, {4, 3, 1, 1}, {4, 2, 2, 1},

{3, 3, 2, 1}, {3, 2, 2, 2}}.

Remark 2.1. In unordered partitions of a positive integer n into m positive integer sum-

mands, its summands are usually arranged in a nonascending order.

The set Cm(n, +) is the set of all natural solutions of the equation

α1 + . . . + αm = n, m 6 n; (2.6)

the set C(n, +) is the union of sets of all natural solutions of the equations

α1 + . . . + αm = n, m = 1, . . . , n;

the set Pm(n, +) is the set of natural solutions of the system

{

α1 + α2 + . . . + αm = n,

α1 > α2 > . . . > αm,
(2.7)

and finally, the set P (n, +), with regard for zero components of a partition, is the set of all

integral nonnegative solutions of the system
{

α1 + α2 + . . . + αn = n,

α1 > α2 > . . . > αn,
(2.8)

If an unordered partition of a positive integer n consists of λ1 ones, λ2 twos and so

on λn summands, which equal n, i.e., the primary specification of a partition is as follows

[1λ1, 2λ2, . . . , nλn], then the exponents of this specification satisfy the equation

λ1 + 2λ2 + . . . + nλn = n (2.9)

and the number of solutions of the system (2.8) equals the number of solutions of the equa-

tion (2.9).

But if an unordered partition consists of m summands, then the exponents of this spec-

ification satisfy the system of equations
{

λ1 + 2λ2 + . . . + nλn = n,

λ1 + λ2 + . . . + λn = m,
(2.10)

Now the following is obvious.
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Proposition 2.1. There exists a natural bijection between the set of natural solutions of the

system (2.7) and the set of integral nonnegative solutions of the system (2.10).

Let us denote the following:

|Cm(n, +)| = c(n, m), |C(n, +)| = c(n),

|Pm(n, +)| = p(n, m), |P (n, +)| = p(n), (2.11)

and we suppose

c(n, m) = p(n, m) = 0

for n < m.
It is obvious that

c(n) =

n
∑

m=1

c(n, m), p(n) =

n
∑

m=1

p(n, m). (2.12)

Proposition 2.2. The following equality holds

c(n, m) =

(

n − 1

m − 1

)

. (2.13)

Proof. Since m 6 n, then we subtract m from both members of the equation (2.6). We

obtain the equation

(α1 − 1) + (α2 − 1) + . . . + (αm − 1) = n − m.

Consequently, the bijection is established between natural solutions of the equation (2.6)

and integral nonnegative solutions of the equation

β1 + β2 + . . . + βm = n − m,

where βi = αi −1, i = 1, . . . , m. But the number of solutions of the latter equation equals
(

n−1
m−1

)

.

Proposition 2.3. The following equality holds

c(n) = 2n−1. (2.14)

Proof. The validity of this proposition follows directly from the equality (2.13) and the first

equality (2.12):

c(n) =
n
∑

m=1

c(n, m) =
n
∑

m=1

(

n − 1

m − 1

)

= 2n−1.

Definition 2.4. Let α = (α1, α2, . . . , αm) ∈ Cm(n, +). A number (n − m) is decrement

of an ordered partition α. A partition with an event decrement is even, nd with an odd one

— odd. To each ordered partition α, we also ascribe the sign (−1)n−m.
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Example 2.3. In the set

C(4, +) =

= {(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1)}

the partitions

{(3, 1), (1, 3), (2, 2), (1, 1, 1, 1)}

are even, and the partitions

{(4), (2, 1, 1), (1, 2, 1), (1, 1, 2)}

are odd.

An alert reader notices that the number of even ordered partitions of the set C(4, +)

equals the number of its odd partitions.

The following general is true.

Proposition 2.4. The number of even partitions of the set C(n, +) equals the number of

odd partitions of this set.

Proof. From the known identity
∑k

i=0(−1)i
(

k
i

)

= 0 and the equality (2.13), it follows that

(−1)n−m
n
∑

m=1

c(n, m) = (−1)n−m
n
∑

m=1

(

n − 1

m − 1

)

= (−1)(n−1)−(m−1)
n
∑

m=1

(

n − 1

m − 1

)

= (−1)(n−1)−(i)
n−1
∑

i=0

(

n − 1

i

)

=

= (−1)i
n−1
∑

i=0

(

n − 1

i

)

= 0.

2.3. Sets Ξ(n)

Definition 2.5. [1]. The set Ξ(n) is the set of ordered n-options

ξ = (ξ(1), ξ(2), . . . , ξ(n)) (2.15)

from the multiset with the primary specification {11, 22, . . . , nn}, the elements of which

satisfy the condition:

1) a positive integer ξ(j) satisfies

j ≤ ξ(j) ≤ n, j = 1, 2, · · · , n;

2) for each j = 1, 2, . . . , n the following equalities hold

ξ(j) = ξ(j + 1) = . . . = ξ(ξ(j)).

Complimentary Contributor Copy



192 Roman Zatorsky

Note that for j = n the inequality from the first condition is of the form n ≤ ξ(n) ≤ n,
therefore ξ(n) = n.

Example 2.4.

Ξ(3) = {(1, 2, 3), (2, 2, 3), (1, 3, 3), (3, 3, 3)}.

Remark 2.2. The sets Ξ(n) first appeared while finding the number of shortest paths in a

Ferrer graph [11], connecting the limiting southeast point with the limiting northwest point

of this graph. Nevertheless, the number of shortest paths in a Ferrer graph of the multiset

A = {aα1

1 , aα2

2 , . . . , aαr
r } was initially expressed in terms of the following formula:

P (α1, α2, . . . , αr) =

=
∑

{s
k1
1 ,...,s

kl
l }∈Ξ(r)

(−1)r−(λ1+...+λp)
Πl

j=1Π
kj−1
i=0 (αsj

− kj + i + 2)

Πl
i=1ki!

,

where k1, k2, . . . , kl and λ1, λ2, . . . , λp are respectively exponents of the primary and sec-

ondary specifications (see p. 187) of the multiset {sk1

1 , . . . , skl

l }. But it’s been a long time

before Ξ(n) is interpreted as the set used to add summands of the paradeterminant (see

Theorem 3.2 on p. 201) of some triangular matrix.

Remark 2.3. (Levitskaya A.A.) The following set may be written in its explicit form Ξ(n):

Ξ(n) =

n−1
⋃

k=0

⋃

16i1<i2<...<ik6n−1

{{ii11 , ii2−i1
2 , . . . , i

ik−ik−1

k , nn−k}}.

Proposition 2.5. [1]. There is a one-to-one correspondence between the elements of the

set Ξ(n) and the elements of the set C(n, +) of ordered partitions of a positive integer n.

We prove this in several steps.

1. If an element ξ ∈ Ξ has primary specification

[1α(1), 2α(2), . . . , nα(n)],

then the following equality holds
n
∑

i=1

α(i) = n.

Therefore, the exponents α(1), α(2), . . . , α(n) of the first specification of an element ξ

form some ordered partitions of a number n. Hence, we obtain reflection

ϕ : ξ 7→ (α(1), α(2), . . . , α(n))

of the set Ξ(n) in the set C(n, +).

2. Injectiveness of reflection ϕ. Let

ξ1 = (ξ1(1), ξ1(2), . . . , ξ1(n)), ξ2 = (ξ2(1), ξ2(2), . . . , ξ2(n))

Complimentary Contributor Copy



Introduction to the Theory of Triangular Matrices (Tables) 193

be two different elements of the set Ξ(n) with primary specifications

[1α1(1), 2α1(2), . . . , nα1(n)], [1α2(1), 2α2(2), . . . , nα2(n)].

Let i be also the least index when the following inequality holds ξ1(i) 6= ξ2(i). We assume

that ξ1(i) < ξ2(i). Then from the condition 2) of the definition 2.5 follows the inequality

α1(ξ2(i)) < α2(ξ2(i)), i.e., different ordered partitions of the set C(n, +) correspond to

the elements ξ1 and ξ2.
3. We construct back reflection Ξ(n) in C(n, +) by the following algorithm. Let p =

(p(1), p(2), . . . , p(s)) ∈ C(n, +).
p.1. beginning

p.2. i := 1; p := p(i); j := 1
p.3. ξ(j) = . . . = ξ(p) = p
p.4. j := p + 1; i := i + 1

p.5. if i ≤ s, then p := p + p(i); go to p.3.

p.6. end

Since 1 ≤ p(i), then after meeting p.4 and p.5 of this algorithm, the following inequality

holds j ≤ p, which together with the equalities of p.3. satisfy both conditions of Definition

2.5.

Let ξ ∈ Ξ(n) and r be a number of different components of an element ξ. The number

n − r is a decrement of an element ξ, and number ε(ξ) = (−1)n−r — its sign.

Remark 2.4. The bijection ϕ from the demonstration of the proposition 2.5 maintains the

signs as the number of different components of an element ξ equals the number of non-zero

components of the partition ϕ(ξ).

From Propositions 2.3 and 2.5 it follows directly

Corollary 2.1. |Ξ(n)| = 2n−1.

The set Ξ(n) can also be constructed with the help of the following recurrent algorithm.

Proposition 2.6. [1]. (i) Ξ(1) = {(1)}.
(ii) If the set Ξ(k) is constructed already, then the elements of the set Ξ(k + 1) can

be obtained by forming two elements of the set Ξ(k + 1) with the help of each element

ξ = (ξ(1), . . . , ξ(k)) of the set Ξ(k). The first is ascribed to the (k + 1) place of a number

k +1, and the second is formed with replacement of all the components equal to k by k +1

and is ascribed to the (k + 1) place of the component k + 1.

Proof. From the remark on Definition 2.5, (k + 1) place in each ordered multiset of the set

Ξ(k + 1) is taken by a number k + 1, therefore, ascribing the number k + 1 to the elements

of the set Ξ(k) to the (k + 1) place, we obtain 2k−1 different elements of the set Ξ(k + 1).

The set of these elements is denoted by Ξ(k; k + 1).

Replacement of a number k by a number k + 1 in each multiset of the set Ξ(k) as well

as ascription of k+1 to the (k+1) place does not violate conditions of the definition of the

set Ξ(n), for all the elements ξ(i), less than k, satisfy these conditions, and a number k+1,
which appeared in the j place, also takes all the consecutive places up to (k + 1) inclusive.
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This procedure gives 2k−1 more different elements of the set Ξ(k + 1). Let us denote the

set of these elements by Ξ(k + 1; k + 1).

Multiplicity of occurrence of a number k + 1 in each element of the set Ξ(k; k + 1)
equals 1, and multiplicity of occurrence of the same number in each element of the set

Ξ(k + 1; k + 1) is more than 1. Therefore, all the elements of these two sets are different

and belong to Ξ(k + 1)–set.

Since Ξ(k; k+1)∪Ξ(k+1; k+1) ⊆ Ξ(k+1) and |Ξ(k; k+1)∪Ξ(k+1; k+1)| = 2k,
then from the corollary 2.1 follows the equality Ξ(k; k + 1)∪Ξ(k + 1; k + 1) = Ξ(k + 1).

Definition 2.6. [1]. Elements ξ1, ξ2 ∈ Ξ(n) are called amicable if their bases satisfy the

inequality

[ξ1] ∩ [ξ2] 6= {n}.

If not, these elements are called non-amicable.

The set of all the elements of the set Ξ(n), which are non-amicable to the element α of

this set, are denoted by Ξα(n).
We leave it for the reader to prove the following proposition.

Proposition 2.7. [1]. There are exactly 3n−1 ordered pairs of non-amicable elements of

the set Ξ(n), i.e.,
∑

α∈Ξ(n)

|Ξα(n)| = |{(α, β) ∈ Ξ(n) × Ξ(n) : [α] ∩ [β] = {n}}| = 3n−1.

3. Definition of Triangular Matrices and Functions on Them

Due to the fact that a number of mathematical problems require introduction of trian-

gular tables of numbers and some numerical functions over them, it is necessary to adjust

the notion of matrix.

Matrix is any table of numbers from some number field.

To avoid confusion about the notions of rectangular and square matrices, we use the

term ”matrix” with the respective adjective, which characterizes its form. Thus, the no-

tion of a triangular matrix is not confused with the notion of an upper or lower triangular

matrix related only to rectangular and square matrices. Not to heap up redundant mathe-

matical terms, however, in the theory of triangular matrices, we retain analogous notions of

algebraic complement, row and column of a triangular matrix, its diagonal elements.

3.1. Definition of Triangular Matrices

Let K be some number field.

Definition 3.1. [6]. A triangular table

A =











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











n

(3.1)
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of numbers from a number field K is called a triangular matrix, an element a11 is an upper

element of this triangular matrix, and a number n is its order.

Elements ai1, ai2, . . . , aii form the i–th row of the triangular matrix (3.1), and elements

ajj, aj+1,j, . . . , anj form its j–th column. Elements a11, a22, . . . , ann are elements of the

hypotenuse of the triangular matrix; elements ai,i−1, i = 2, 3, . . . , n are elements of the

first subhypotenuse; elements ai,i−2, i = 3, 4, . . . , n are elements of the second subhy-

potenuse etc.

Sometimes we shall use a contracted notation of the triangular matrix (3.1)

A = (aij)16j6i6n.

If in a triangular matrix, all elements, except elements of a hypotenuse, are zero, then

this matrix is called a triangular 1-matrix. But if in a triangular matrix, only elements

of a hypotenuse and elements of the first subhypotenuse are non-zero, then this triangular

matrix is called a triangular 2-matrix. In the same way we write a triangular 3-matrix etc.

Example 3.1. In the following triangular matrix, some regularities are found.

B =

(

j

i − j + 1

)

16j6i6n

=





















1
1
2 2
1
3

2
2 3

1
4

2
3

3
2 4

...
...

...
...

. . .

1
n

2
n−1

3
n−2

4
n−3

... n





















n

. (3.2)

The triangular matrix B is defined by the function of two variables

bij =
j

i − j + 1
,

where arguments i, j denote numbers of its row and column respectively.

Definition 3.2. [6]. A triangular 1-matrix of the form

I = (δij)16j6i6n =











1
0 1
...

...
. . .

0 0 · · · 1











n

,

where δij is the Kronecker symbol, is an identity triangular matrix, and a matrix of the form

M = (Mi · δij)16j6i6n =











M1

0 M2
...

...
. . .

0 0 · · · Ms











n

, (3.3)

where Mi, i = 1, . . . , s are some triangular matrices and rectangular zero tables are

denoted by zeros, is a block triangular matrix.

Apart from the given above finite triangular matrices, infinite triangular matrices are

also important

A = (aij)16j6i<∞.

Complimentary Contributor Copy



196 Roman Zatorsky

3.2. Operations with Triangular Matrices

We could define the sum of two triangular matrices of one order. It is similar to the

corresponding operation with square matrices (lower triangular matrices).

It is known that linear transformations of vector spaces carry the main sense load of

square matrices. Transformations of this kind require introduction of corresponding oper-

ations with square matrices. Since triangular matrices are usually defined by families of

polynomials, then one of the functions triangular matrices serve is linear transformations of

some linear space of polynomial vectors.

Definition 3.3. A linear space of polynomial vectors is a linear space Pn, the elements of

which are polynomial vectors in the form of

(f0, f1, . . . , fn),

where

fi = ai0 + ai1x + ai2x
2 + . . . + aiix

i, aii 6= 0, i = 1, 2, . . . , n

are some polynomials of the i-th degree from variable x.

We need Aigner’s idea of constructing connection coefficients between polynomial se-

quences (see [18], p. 110).

Let Pn be a linear space of polynomial vectors and f = (f0, f1, . . . , fn) — its element.

It is obvious that component of this vector form a basis in some linear space of polynomials

Pn, the degree of which are not more than n. The vector of polynomials

e(x) = (1, x, x2, . . . , xn) ∈ Pn

is a standard polynomial vector.

Let us assume that besides the vector f = (f0, f1, . . . , fn) ∈ Pn one more polynomial

vector g = (g0, g1, . . . , gn) is given. We express components of the latter vector through

basic polynomials f0, f1, . . . , fn. Thereby, we obtain the system of equalities















g0 = a00f0

g1 = a10f0 + a11f1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gn = an0f0 + an1f1 + an2f2 + . . . + annfn

, (3.4)

or more concisely

gi =

i
∑

j=0

aijfj, i = 0, 1, . . . , n. (3.5)

We shall write this system of equalities as a matrix











g0

g1
...

gn











def
=











a00

a10 a11
... . . .

. . .

an0 an1 . . . ann











n

·











f0

f1
...

fn











, (3.6)
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or

g = A · f,

where

A =











a00

a10 a11
... . . .

. . .

an0 an1 . . . ann











n+1

. (3.7)

From the equalities (3.4), (3.6) follows the rule of multiplication of the triangular matrix

A by the polynomial vector f :











a00

a10 a11
... . . .

. . .

an0 an1 . . . ann











n

·











f0

f1
...

fn











=

=









a00f0

a10f0 + a11f1

. . . . . . . . . . . . . . . . . . . . . . . .
an0f0 + an1f1 + an2f2 + . . . + annfn









.

Thus, the triangular matrix A can be interpreted as a linear operator A, which transforms

the polynomial vector f of the space Pn into the polynomial vector g of this space.

It is obvious that the identity operator E is associated to the identity matrix

E =











1

0 1
... . . .

. . .

0 0 . . . 1











.

Using superposition of two operators, which are given by triangular matrices, it is pos-

sible to lay down a rule of multiplication of two triangular matrices:

C = AB =





i
∑

s=j

aisbsj





06j6i6n

. (3.8)

3.3. Definition of Parafunctions of Triangular Matrices

In this section, we introduce the notion of functions of triangular matrices, which are

called the paradeterminant and the parapermanent of triangular matrices. To begin with, we

shall consider some subsidiary statements. To every element aij of the triangular matrix

(3.1), we correspond (i − j + 1) elements aik , k ∈ {j, ..., i}, which are called derived ele-

ments of a triangular matrix, generated by a key element aij . A key element of a triangular

matrix is concurrently its derived element. The product of all derived elements generated by
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a key element aij is denoted by {aij} and is called a factorial product of this key element,

i.e.,

{aij} =

i
∏

k=j

aik. (3.9)

Let us show schematically elements of the matrix (3.1) by means of circles, key ele-

ments — filled circles, and derived elements — asterisks. Fig. 2.1. presents the triangular

matrix of order 5, where a42 is a key element, and elements a42, a43, a44 are derived ele-

ments, which it generates.

















◦

◦◦

◦ ◦ ◦

◦ • ∗∗

◦ ◦ ◦ ◦ ◦

















Figure 2.1.

Definition 3.4. [6]. A tuple of key elements of the matrix (3.1) is a normal tuple of this

matrix, if they generate a monotransversal, i.e., a set of derived elements of cardinality n,

no two of which belong to the same column of this matrix.

For instance, in order to add the key element of the matrix schematically shown in Fig.

2.1. to a normal tuple of key elements, it is necessary to add two more key elements a11

and a55 to it.

Let C(n, +) be the set of all ordered partitions of a positive integer n into positive

integer summands. It turns out that there is a one-to-one correspondence between elements

of this set and normal tuples of key elements of the matrix (3.1) of order n.

Let us consider some ordered r–partition p = (p1, ..., pr). To each component ps, s ∈
{1, ..., r}, of this partition, we correspond the key element aij of the matrix (3.1) with the

help of the following algorithm :

p.1. beginning

p.2. j := 1; s := 0; i := 0

p.3. s := s + 1; i := i + ps; key element(s) := aij

p.4. If s < r then j := j + ps; go to p.3

p.5. end.

Thereby we obtain a normal tuple of key elements generated by the partition p. It is also

easy to establish a backward correspondence.

In general, there is a bijection between ordered r-partitions and normal tuple of key

elements (Tarakanov V.Ye.):

(n1, n2, . . . , nr) ∈ Cr(n, +) ⇔ (aN1,N0+1, aN2,N1+1, . . . , aNr,Nr−1), (3.10)
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N0 = 0, Ns =

s
∑

i=1

ni, s = 1, 2, . . . , r.

The algorithm given above describes one more geometric image of ordered partitions of

a positive integer n into positive integer summands. Let us have a triangular matrix of order

n. By the partition p = (p1, ..., pr) of a positive integer n, we construct a normal tuple of

elements of this matrix, which form its monotransversal.

To the first component p1 of this partition, we correspond a row of elements of a trian-

gular matrix, where there are exactly p1 elements of this matrix. This row is the p1–th row

of the matrix. Then the first p1 columns are ignored and a new triangular matrix of order

(n − p1) is considered. To the second component p2 of the partition, we correspond a row

of a new matrix, which consists of p2 elements, etc.

Example 3.2. Let us show a one-to-one correspondence between ordered partitions of the

number 4 and normal tuples of key elements of a triangular matrix of order four according

to the following schemes:

◦
◦ ◦
◦ ◦ ◦

• ∗ ∗ ∗

◦
◦ ◦
• ∗ ∗

◦ ◦ ◦ •

•
◦ ◦
◦ ◦ ◦

◦ • ∗ ∗

◦
• ∗
◦ ◦ ◦

◦ ◦ • ∗

(4) (3, 1) (1, 3) (2, 2)

◦
• ∗

◦ ◦ •
◦ ◦ ◦ •

•
◦ ◦

◦ • ∗
◦ ◦ ◦ •

•
◦ •

◦ ◦ ◦
◦ ◦ • ∗

•
◦ •

◦ ◦ •
◦ ◦ ◦ •

(2, 1, 1) (1, 2, 1) (1, 1, 2) (1, 1, 1, 1)

Figure 2.2.

To every normal tuple a of key elements, we correspond the sign (−1)ε(a), where ε(a)
is the sum of all the indices of the key elements of this tuple.

Definition 3.5. [6]. The paradeterminant of the triangular matrix (3.1) is the number

ddet(A) = �
�
��

B
B
BB

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

B
B

BB

�
�

��

=

=
∑

(α1,α2,...,αr)∈C(n,+)

(−1)ε(a)
r
∏

s=1

{ai(s),j(s)}, (3.11)

where ai(s),j(s) is the key element corresponding to the s-th component of the partition

α = (α1, α2, . . . , αr), and the symbol ε(a) is the sign of the normal tuple a of key elements.

In analogy to the notion of the permanent of a square matrix, we define the paraperma-

nent of a triangular matrix.
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Definition 3.6. [6]. The parapermanent of the triangular matrix (3.1) is the number

pper(A) =











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











=

=
∑

(α1,α2,...,αr)∈C(n,+)

r
∏

s=1

{ai(s),j(s)}, (3.12)

where ai(s),j(s) is a key element corresponding to the s-th component of the partition α =
(α1, α2, . . . , αr).

Remark 3.1. The parapermanent of a triangular matrix can be defined as a sum of products

of elements of all monotransversals of this matrix5.

Remark 3.2. Sometimes it is convenient to denote the paradeterminant (3.11) and the para-

permanent (3.12) by 〈aij〉1≤j≤i≤n and [aij]1≤j≤i≤n
.

Remark 3.3. Because of Proposition (2.3) on p. 190, the paradeterminant and the parap-

ermanent of order n consists of 2n−1 summands.

In the sequel, where the paradeterminant and the parapermanent of a triangular matrix

are presented simultaneously, we will use the term parafunction of a triangular matrix.

Example 3.3. Using Definition 3.5, find the value of the paradeterminant of the triangular

matrix of order four (see the schemes on p. 199):

�
�
�

B
B
B

a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

B
B
B

�
�
�

=

= −a41a42a43a44 + a31a32a33a44 + a11a42a43a44 +

+ a21a22a43a44 − a21a22a33a44 − a11a32a33a44 −

− a11a22a43a44 + a11a22a33a44.

�

We shall prove the theorem which could be the definition of the paradeterminant and the

parapermanent of triangular matrices. This theorem, in principal, is based on the bijection

(3.10).

Theorem 3.1. [5]. If A is the triangular matrix (3.1), then the following equalities hold:

ddet(A) =

n
∑

r=1

∑

p1+...+pr=n

(−1)n−r
r
∏

s=1

{ap1+...+ps,p1+...+ps−1+1}, (3.13)

5The permanent of a square matrix is jokingly called the determinant without signs. It can be defined as

the sum of products of all elements of transversals of this matrix.

Complimentary Contributor Copy



Introduction to the Theory of Triangular Matrices (Tables) 201

pper(A) =

n
∑

r=1

∑

p1+...+pr=n

r
∏

s=1

{ap1+...+ps,p1+...+ps−1+1},

where the summation is over the set of natural solutions of the equality p1 + . . . + pr = n.

Proof.

1) We shall prove that the result of the algorithm 3.3 on p. 198 is the tuple of key

elements

ap1,1, ap1+p2,p1+1, . . . , ap1+...+pr,p1+...+pr−1+1.

For this purpose, we shall compute the final values of the indices i, j of the element aij

in this algorithm. It is obvious they are the sums i = p1 + p2 + . . . , j = 1 + p1 + . . . ,
moreover, because s < r, the last summand of the first sum is pr, and of the second —

pr−1. It is also obvious that the obtained tuple of key elements of the triangular matrix (3.1)

is the normal tuple of this matrix.

2) We shall prove that the sign (−1)ε(a) of the normal tuple of elements of the triangular

matrix (3.1), in Definition 3.5, corresponding to the partition p = (p1, . . . , pr), coincides

with the sign (−1)n−r of this ordered partition.

It is true that:

r
∑

s=1

((p1 + . . . + ps) + (p1 + . . . + ps−1 + 1)) ≡

≡ (p1 + . . . + ps + r) ≡ (n + r) ≡ n − r (mod r).

We shall prove one more theorem, which could be the definition of parafunctions of

triangular matrices. It is based on the notion of the set Ξ(n).

Theorem 3.2. [1]. If A is the triangular matrix (3.1), then the following equalities hold

ddet(A) =
∑

ξ∈Ξ(n)

(−1)n−r · aξ(1),1aξ(2),2 · . . . · aξ(n),n,

pper(A) =
∑

ξ∈Ξ(n)

aξ(1),1aξ(2),2 · . . . · aξ(n),n,

where r is the number of elements in the basis of the multiset ξ or the number of elements

belonging to this basis.

Proof. By the algorithm, cited in the demonstration of Proposition 2.5, the following equal-

ity holds
r
∏

s=1

{ap1+...+ps, p1+...+ps−1+1} = aξ(1),1aξ(2),2 · . . . · aξ(n),n.

Therefore, the validity of this theorem follows directly from Theorem 3.1 and Remark 2.4.
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3.4. Inverse Triangular Matrix

First of all, we shall note that an inverse triangular matrix, in principle, coincides with

an inverse matrix of a lower triangular matrix. Therefore, we shall turn our attention only

to its construction by means of paradeterminant of its corners.

A triangular matrix A−1 inverse to a triangular matrix A can be constructed with the

help of the equality (3.6), which is determined by a linear operator of reflecting the vector

of polynomials f = (f0, f1, . . . , fn) on the vector of polynomials g = (g0, g1, . . . , gn).
The elements of an inverse matrix can be obtained by solving simultaneous equations

(3.4) under the system of unknown (f0, f1, . . . , fn).

Theorem 3.3. An triangular matrix A−1 inverse to the triangular matrix (3.7) is a matrix

in the form of

(bij)06j6i6n =





(−1)i+j

ajj

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6i−j−1





06j6i6n

. (3.14)

Proof. We show that solution of the simultaneous equations (3.4) is

fi =

i
∑

j=0

(−1)i+j

ajj
·

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6i−j−1

· gj, i = 0, 1, . . . .

For i = 0, the simultaneous equations (3.4) have the following solution

f0 =

0
∑

j=0

(−1)0+j

a00
·

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6−j−1

· gj =
1

a00
· g0,

here we consider that
〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6−1

= 1.

Let us assume that the simultaneous equations (3.4) for i = k − 1 have the following

solution

fk−1 =

k−1
∑

j=0

(−1)k−1+j

ajj
·

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6k−j−2

· gj, (3.15)

and prove thereby

fk =

k
∑

j=0

(−1)k+j

ajj
·

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6k−j−1

· gj.

Let us find the polynomial fk from the last equation of the system (3.4) for i = k :

fk = −

k−1
∑

i=0

aki

akk
fi +

1

akk
gk.
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Let us place in the last equality instead of polynomials fi, i = 0, 1, . . . , k − 1 their known

values (3.15):

fk =−

k−1
∑

i=0

aki

akk

i
∑

j=0

(−1)i+j

ajj

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6i−j−1

· gj +
1

akk
gk.

Let us change the order of summation:

fk =

k−1
∑

j=0

(−1)k+j 1

ajj
×

×





k−1
∑

i=j

(−1)i−k+1 aki

akk

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6i−j−1



 gj +
1

akk
gk.

But the expressions in the parentheses in the last equality is decomposition of the parade-

terminant
〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6k−j−1

by the elements of the last row; therefore, we have:

fk =

k−1
∑

j=0

(−1)k+j 1

ajj

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6k−j−1

· gj +
1

akk
gk =

=

k
∑

j=0

(−1)k+j 1

ajj

〈

ar+j+1,s+j

ar+j+1,s+j+1

〉

06s6r6k−j−1

· gj.

Remark 3.4. From Theorem 3.3 it follows that for an inverse triangular matrix to exist, it

is necessary its all diagonal elements equal zero.

Remark 3.5. It is obvious all the diagonal elements of an inverse triangular matrix are not

equal to zero.

Example 3.4. A triangular matrix inverse to the matrix

A =









a00

a10 a11

a20 a21 a22

a30 a31 a32 a33









,

according to Theorem 3.3 is written as

A−1 =
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=























1
a00

− 1
a00

〈a10

a11
〉 1

a11

1
a00

〈 a10

a11
a20

a21

a21

a22

〉

− 1
a11

〈a21

a22
〉 1

a22

− 1
a00

〈
a10

a11
a20

a21

a21

a22
a30

a31

a31

a32

a32

a33

〉

1
a11

〈 a21

a22
a31

a32

a32

a33

〉

− 1
a22

〈a32

a33
〉 1

a33























.

If we find the polynomial vector f from the simultaneous equations (3.6), then we

obtain a new linear transformation f = A−1g, which is a matrix inverse to the matrix A
and transforms the polynomial vector g into the polynomial vector f.

Example 3.5. Let us find a triangular matrix inverse to the triangular matrix

A =











a1

a1 a2
... . . . . . .

a1 a2 . . . an











The paradeterminants of all corners Ri,j+1(A
′), 2 6 i − j − 1 equal zero (see 4.5). The

diagonal elements of the inverse matrix equal 1
aii

. Find the elements of the first subdiagonal.

−
1

aj−1

〈aj−1

aj

〉

= −
1

aj

.

Thus, the inverse triangular matrix is written as:

A−1 =

















1
a1

− 1
a2

1
a2

... . . .
. . .

0 0 . . . 1
an−1

0 0 . . . − 1
an

1
an

















.

3.5. Paradeterminant Product of Triangular Matrices

In one of the preceding sections where operations with triangular matrices are covered,

we have already considered the product of triangular matrices. But with this product of

triangular matrices, the following equality does not hold

ddet (AB) = ddet (A)ddet (B).

The purpose of this section is to construct the product of triangular matrices, for which it

does.

Definition 3.7. The incomplete product of two paradeterminants ddet (A) and ddet (B) of

triangular matrices A and B of order n is the expression ddet (A) ◦ ddet (B), which is
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defined by the equality

ddet (A) ◦ ddet (B) =

=
∑

(ξi,ξj)∈Ξ(n)×Ξ(n)

(−1)ε(ξi)+ε(ξj)k(ξi, ξj)aξi(1),1 · . . . · aξi(n),n ×

× bξj(1),1 · . . . · bξj(n),n, (3.16)

where

k(ξi, ξj) =

{

1, [ξi] ∩ [ξj] = {n},

0, [ξi] ∩ [ξj] 6= {n},
(3.17)

and ε(ξi), ε(ξj) — signs (see p. 193) of elements ξi, ξj ∈ Ξ(n).

The equality (3.17) corresponds the number k(ξi, ξj) = 1 to the pair (ξ1, ξj) of non-

amicable elements ξi and ξj (see Definition 2.6 on p. 194), and the number k(ξi, ξj) = 0 to

the pair of amicable elements.

In the same way, we can define the incomplete product of two parapermanents of trian-

gular matrices:

Definition 3.8. The incomplete product of two parapermanents pper(A) and pper(B) of

triangular matrices A and B of order n is the expression pper(A) ◦ pper(B), which is

defined by the equality

pper(A) ◦ pper(B) = (3.18)
∑

(ξi,ξj)∈Ξ(n)×Ξ(n) k(ξi, ξj)aξi(1),1 · . . . · aξi(n),n · bξj(1),1 · . . . · bξj(n),n .

Let us specify the equality (3.17). Number all elements of Ξ(n)-set in the order we

obtain them by means of the recurrent algorithm, which is based on Proposition 2.6 (see p.

193). Thereby we obtain the sequence

ξ1, ξ2, . . . , ξ2n−1,

each term of which is some multiset of the basis {1, 2, . . . , n}. If all the values of the

function defined by the equality (3.17) are written in the table, and one is replaced with a

circle, and zero is replaced with an empty cell, then we obtain a fragment of a fractal figure6

of the n-th generation.

For n = 5 we obtain a fragment of a fractal figure of the fifth generation, which is

shown in the following table:

To construct an algorithm for finding an incomplete product of paradeterminants and

an incomplete product of parapermanents, an important task is to describe pairs (i, j) of

indices of function arguments

k(ξi, ξj), 1 6 i 6 2n−1, 2n−1 − i + 1 6 j 6 2n−1,

6Fractal is an infinitely self-similar geometric shape, each fragment of which is repeated when scale is

reduced (see [19]). This notion was introduced by Benoit Mandelbrot in 1975. The birth of fractal geometry is

associated with the publication of his monograph ”The Fractal Geometry of Nature”, 1977.
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ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14 ξ15 ξ16

ξ1 •

ξ2 • •

ξ3 • •

ξ4 • • • •

ξ5 • • • • •

ξ6 • • • •

ξ7 • • • •

ξ8 • • • • • • • •

ξ9 • •

ξ10 • • • •

ξ11 • • • •

ξ12 • • • • • • • •

ξ13 • • • •

ξ14 • • • • • • • •

ξ15 • • • • • • • •

ξ16 • • • • • • • • • • • • • • • •

to which in a fractal triangular of the n-th generation one can correspond 1.

Perepichka N.V. established dependence between the fragments of fractal figures and

number triangles of zeros and ones, which he called binary Pascal triangles. A binary

Pascal triangle can be obtained by replacing odd numbers with one and even numbers with

zero in a classic Pascal triangle, i.e., with respective numbers of a classic Pascal triangle by

module 2. Thus, we obtain an analogous recurrent algorithm for construction of a binary

Pascal triangle by replacing in the expression

cij = ci−1,j−1 + ci−1,j

the sum logical operation with the ⊕ ”exclusive or” operation. Now it is easy to prove the

equality:

k(ξi, ξj) =

(

i − 1

i + j − (2n−1 + 1)

)

mod 2, (3.19)

where indices i, j satisfy the inequalities

1 6 i 6 2n−1, 2n−1 − i + 1 6 j 6 2n−1.

Remark 3.6. From the symmetry of a square table relative to its diagonal follows the truth

of the equalities:

ddet (A) ◦ ddet (B) = ddet (B) ◦ ddet (A)

pper(A) ◦ pper(B) = pper(B) ◦ pper(A)

Let Rij(A) and Rij(B) be the corners of matrices A and B. Let us denote the in-

complete product of paradeterminants and parapermanents of these corners by dij and pij

respectively, i.e.,

dij = ddet (Rij(A)) ◦ ddet (Rij(B)) = ddet (Rij(B)) ◦ ddet (Rij(A)),

pij = pper(Rij(A)) ◦ pper(Rij(B)) = pper(Rij(B)) ◦ pper(Rij(A)),

and we shall assume that

di,i+1 = pi,i+1 = 1. (3.20)
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Definition 3.9. The paradeterminant product of two triangular matrices A and B of order

n is a triangular matrix C = A
d
◦ B of the same order, whose elements cij are defined by

the equality

cij = (−1)δij+1 dij

di,j+1
, (3.21)

here δij is the Kronecker symbol, 1 6 j 6 i 6 n.

In the same way, we introduce the parapermanent product of two triangular matrices.

Definition 3.10. The parapermanent product of two triangular matrices A and B of order

n is a triangular matrix C = A
p
◦ B of the same order, whose elements cij are defined by

the equality

cij =
pij

pi,j+1
. (3.22)

The following equalities are obvious:

A
d
◦ B = B

d
◦ A, (3.23)

(A
d
◦ B)

d
◦ C = A

d
◦ (B

d
◦C). (3.24)

Analogous equalities also hold for the parapermanent product of triangular matrices.

Theorem 3.4. For triangular matrices A and B of the same order, the following equalities

hold:

ddet (A
d
◦ B) = ddet (A)ddet (B), (3.25)

pper(A
p
◦B) = pper(A)pper(B). (3.26)

Proof. 1). First of all, we note that the factoral product of the element

cij = (−1)δij+1 dij

di,j+1

equals (−1)i−jdij and that in the paradeterminant

ddet (A
d
◦B) = ddet

(

(−1)δij+1 dij

di,j+1

)

the modules of all summands

di(1),1di(2),i(1)+1 · . . . · di(r),i(r−1)+1dn,i(r)+1 (3.27)

are different. Let us place in these summands instead of incomplete paradeterminant prod-

ucts their values and we shall obtain the sum of different products of some summands of the

paradeterminant of the matrix A by some summands of the paradeterminant of the matrix

B.

2). We shall prove that the paradeterminant ddet (A
d
◦B) consists of 22(n−1) summands.

To each ordered partition of a positive integer n into r components one can correspond the
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summand (3.27). The incomplete paradeterminant product dij consists of 3i−j summands

(see Proposition 2.7). Therefore, each summand in the form of (3.27), in its turn, consists

of 3n−r summands. But according to Proposition 2.2, there are exactly

(

n − 1

r − 1

)

r–partitions of a positive integer n. So,

3n−r

(

n − 1

r − 1

)

summands correspond to all r–partitions of a number n. Thus,

n
∑

r=1

3n−r

(

n − 1

r − 1

)

= (3 + 1)n−1 = 22(n−1)

summands correspond to all ordered partitions of a positive integer n. We shall obtain just

enough different summands as a result of the product of the paradeterminants ddet (A) and

ddet (B).

3) It follows from the equality (5.1) that the sign of each summand in the left-hand

member of the equality (3.25) coincides with the sign of this summand in the right-hand

member of this equality.

The second equality of this theorem is proved in the same way.

Proposition 3.1. For any triangular matrix A the following equalities hold

A
d
◦ E = E

d
◦ A = A,

A
p
◦ E = E

p
◦ A = A,

here E is an identity triangular matrix of the same order as a triangular matrix A.

Proof. The first equality of this proposition follows from obvious equalities

ddet (Rij(A))i−j+1 ◦ ddet (E)i−j+1 = {aij}

and the fact that the factorial product of the element

cij = (−1)δij+1 dij

di,j+1

equals

dij = ddet (Rij(A))i−j+1 ◦ ddet (E)i−j+1 .

The second equality is proved in the same way.
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3.6. Scalar Product of Vector by Parafunction

Let us consider one more operation relating to parafunctions of triangular matrices. It

occurs while studying partition polynomials, differentiating composed functions, inversing

series etc.

Definition 3.11. [8]. The scalar product of a vector (b1, b2, . . . , bn) by the paradeterminant

of the triangular matrix (3.1) is the number











b1

b2
...

bn











· �
�
��

B
B
BB

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

B
B
BB

�
�
�� n

def
= (3.28)

=
n
∑

r=1
br ·

∑

p1+...+pr=n

(−1)n−r
r
∏

s=1

{

ap1+...+ps,p1+...+ps−1+1

}

.

In the same way, we define the scalar product of a vector by the parapermanent of a

triangular matrix.

Definition 3.12. The scalar product of a vector (b1, b2, . . . , bn) by the parapermanent of

the triangular matrix (3.1) is the number

(b1, b2, . . . , bn) · pper(A)
def
= (3.29)

=
n
∑

r=1

br ·
∑

p1+...+pr=n

r
∏

s=1

{

ap1+...+ps,p1+...+ps−1+1

}

.

Example 3.6. Let us consider the product of a vector (b1, b2, b3, b4) by the paradeterminant

of the triangular matrix (3.1) for n = 4.









b1

b2

b3

b4









· �
�
�

B
B
B

a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

B
B
B

�
�
�

= (3.30)

= −b1{a41} + b2 · ({a31}{a44} + {a11}{a42} + {a21}{a43})−
b3 · ({a11}{a32}{a44} + {a11}{a22}{a43} + {a21}{a33}{a44})+

b4{a11}{a22}{a33}{a44}.

Thus, when multiplying a vector by the paradeterminant of a triangular matrix, its r–th

component is multiplied by the sum of all those paradeterminant summands corresponding

to the partitions with r components. We also note that the product of a null vector or a

vector, all the components of which equal one, by a parafunction of a triangular matrix is

correspondingly equal to zero or parafunction of this triangular matrix.

Proposition 3.2. Let a, b be two vectors of order n, A and B — triangular matrices of the

same order, and α — some number of a number field K. Then the following equalities hold

α · a · ddet (A) = (α · a) · ddet (A),
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(a + b) · ddet (A) = a · ddet (A) + b · ddet (A),

a · (ddet (A) + ddet (B)) = a · ddet (A) + a · ddet (B).

We leave for the reader to prove this proposition.

Proposition 3.3. For any triangular matrix (3.1) the following equality holds











(−1)n−1

(−1)n−2

...

(−1)0











· �
�
��

B
B
BB

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

B
B
BB

�
�
�� n

=











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











. (3.31)

Proof. According to the equality (3.28), we have











(−1)n−1

(−1)n−2

...

(−1)0











· �
�
��

B
B
BB

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

B
B

BB

�
�

�� n

=

=
n
∑

r=1
(−1)n−r ·

∑

p1+...+pr=n

(−1)n−r
r
∏

s=1

{

ap1+...+ps,p1+...+ps−1+1

}

,

from which, because of the second equality (3.13) (p. 200), follows the validity of this

proposition.

In the same way we can prove the validity of the identity

�
�
��

B
B
BB

a11

a21 a22
...

...
. . .

an1 an2 · · · ann

B
B

BB

�
�

�� n

=











(−1)n−1

(−1)n−2

...

(−1)0











·











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











n

. (3.32)

4. Properties of Parafunctions of Triangular Matrices

Unfortunately, so far there is no ”physical definition” of a triangular matrix paradeter-

minant, which would make it possible to considerably simplify some demonstrations of this

section. But it is interesting to know that despite the definition of triangular matrix para-

functions being substantially different from the definition of square matrix functions, there

are a number of properties among properties of triangular matrix parafunctions, which are

analogous to properties of determinants and permanents.

4.1. Algebraic Complements and Matrix Corners. Triangular Matrix

Decomposition

Let us first consider some important notions relating to triangular matrices, which are

analogs of the notions of a minor and an algebraic complement for square matrices.
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Definition 4.1. [6]. To each element aij of the given triangular matrix (3.1) we correspond

a triangular matrix with this element in the bottom left corner, which we call a corner of

the given triangular matrix and denote byRij(A).

It is obvious that the corner Rij(A) is a triangular matrix of order (i − j + 1). The

corner Rij(A) includes only those elements ars of the triangular matrix (3.1), the indices

of which satisfy the relations j 6 s 6 r 6 i.
Below we shall consider that

ddet (R01(A)) = ddet (Rn,n+1(A)) = pper(R01(A)) =

= pper(Rn,n+1(A)) = 1. (4.1)

Example 4.1. Let us have the triangular matrix:

A =













a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

a51 a52 a53 a54 a55













(4.2)

then the corner R42(A) is written as:

R42(A) =





a22

a32 a33

a42 a43 a44



 .

If the j-th column of the corner Rij(A) is replaced with respective elements of the k-th

column (k < j), and the rest of the elements of the corner are left unchanged, then this

corner is denoted by R
i,

j

k

(A). For instance, in the triangular matrix (4.2), we have:

R4 2

1

(A) =





a21

a31 a33

a41 a43 a44



 .

Below we shall consider that

ddet (Rn, n+1

n

(A)) = pper(Rn, n+1

n

(A)) = 0.

But if the i-th row of the corner Rij of the triangular matrix A is replaced with respec-

tive elements of the k-th row (k > i), and the rest of the elements of the corner are left

unchanged, then this corner is denoted by R i
k
,j(A), or just by R i

k
,j . Below we consider

that

ddet (R 0

i
,1) = pper(R 0

i
,1) = 0. (4.3)

Definition 4.2. [6]. A rectangular table of elements of the triangular matrix (3.1) is in-

scribed in this matrix, if its one vertex coincides with an element an1, and its opposite one

coincides with an element aii, i ∈ {1, . . . , n}. This table is denoted by T (i).
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If in the definition 4.2 we set i = 1, or i = n, then an inscribed rectangular table

degenerates into the first column or into the n-th row of this triangular matrix respectively.

Example 4.2. In Fig. 3.1., the elements of the rectangular table T (3), inscribed in a trian-

gular matrix of the fourth order, are marked out with a rectangle









◦
◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦









Figure 3.1.

When finding values of the paradeterminant and the parapermanent of triangular matri-

ces, it is convenient to use algebraic complements.

Definition 4.3. [6]. Algebraic complements Dij, Pij to a factorial product {aij} of a key

element aij of the matrix (3.1) are, respectively, numbers

Dij = (−1)i+j · ddet (Rj−1,1) · ddet (Rn,i+1), (4.4)

Pij = pper(Rj−1,1) · pper(Rn,i+1), (4.5)

where Rj−1,1 and Rn,i+1 are corners of the triangular matrix (3.1).

Remark 4.1. To mark out corners, an algebraic complement to a factorial product of an

element aij of the triangular matrix (3.1) it is convenient to use the following scheme,

depicted in Fig.3.2.

j i + 1

j − 1 . . .
j . . .

i . . .

i + 1 . . .

n . . .







































◦
...

...

◦ ◦
...

...

. . . . . .
...

◦ ◦ . . . ◦

◦ ◦ . . . ◦ •
. . . . . . . . . . . . . . .

◦ ◦ . . . ◦ • . . . •
◦ ◦ . . . ◦ ◦ . . . ◦ ◦

. . . . . . . . . . . . . . . . . . . . . . . . . .

◦ ◦ . . . ◦ ◦ . . . ◦ ◦ . . . ◦







































Figure 3.2.

In this scheme a corner Rij, corresponding to an element aij, is marked out. The elements

of this corner are marked with black circles. Two corners Rj−1,1 and Rn,i+1, the elements

of which are marked with white circles, are constituents of an algebraic complement of the

factorial product of an element aij .
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Example 4.3. An algebraic complement D54 of a factorial product of an element a54 of a

triangular matrix

(aij)16j6i67 =





















a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

a51 a52 a53 a54 a55

a61 a62 a63 a64 a65 a66

a71 a72 a73 a74 a75 a76 a77





















equals

D54 = (−1)5+4 · ddet





a11

a21 a22

a31 a32 a33



 · ddet

(

a66

a76 a77

)

Now we shall study the properties of triangular matrix parafunctions.

Theorem 4.1. [6]. (Decomposition of a parafunction by elements of an inscribed rectan-

gular table). Let A be the triangular matrix (3.1), and T (i) be some rectangular table of

elements inscribed in it. Then the following equality holds:

ddet (A) =
i
∑

s=1

n
∑

r=i

{ars}Drs, (4.6)

pper(A) =
i
∑

s=1

n
∑

r=i

{ars}Prs, (4.7)

where Drs and Prs are respectively algebraic complements to the factorial product of a key

element ars, which belongs to T (i).

Proof. Corners Rs−1,1 and Rn,r+1 consists of different elements of the matrix (3.1), which

respectively have order (s − 1) − 1 + 1 = s − 1 and n − (r + 1) + 1 = n − r. By

Definitions 3.5 and 3.6 (p. 199), the paradeterminant and the parapermanent of these corners

are respectively the sum 2s−2 and 2n−r−1 of different summands (here, according to the

agreements (4.1), it is convenient to assume that 2−1 = 1). Therefore the expressions

{ars}Drs, {ars}Prs for n ∈ {1, 2, . . .} consist of 2s−2 · 2n−r−1 different summands.

From Fig. 3.3. it is clear that a key element ars of the matrix (3.1) belongs to a normal

tuple of key elements of this matrix only combined with normal tuples of key elements of

its corners Rs−1,1, Rn,r+1. Note that each summand belonging to the right-hand member

of the equalities (4.6), (4.7) consists of the product n of different elements of the matrix

(3.1), for (s− 1) + (r − s + 1) + (n− r) = n, where s− 1 and n− r are orders of corners

Rs−1,1 and Rn,r+1, and the product {ars} consists of r − s + 1 factors (see Fig. 3.3.).

The expressions in the right-hand member of the equalities (4.6), (4.7) consist of 2n−1

summands. Indeed,
i
∑

s=1

n
∑

r=i

2s−2 · 2n−r−1 =

= (1 + 20 + . . . + 2i−2)(2n−i−1 + 2n−i−2 + . . . + 20 + 1) = 2n−1.
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s r + 1

s − 1 . . .

s . . .

r . . .
r + 1 . . .

n . . .







































◦
...

...

◦ ◦
...

...

. . . . . .
...

◦ ◦ . . . ◦
◦ ◦ . . . ◦ ◦

. . . . . . . . . . . . . . .

◦ ◦ . . . ◦ • . . . *

◦ ◦ . . . ◦ ◦ . . . ◦ ◦
. . . . . . . . . . . . . . . . . . . . . . . . . .

◦ ◦ . . . ◦ ◦ . . . ◦ ◦ . . . ◦







































Figure 3.3.

Because all these summands are different, the theorem is proved.

Corollary 4.2. [6]. If i = 1, then Theorem 4.1 gives decomposition of parafunctions by

the elements of the fist column and the equalities (4.6), (4.7) are as follows:

ddet (A) =

n
∑

r=1

{ar1}Dr1 =

n
∑

r=1

(−1)r+1 {ar1} ·ddet (Rn,r+1), (4.8)

pper(A) =

n
∑

r=1

{ar1}Pr1 =

n
∑

r=1

{ar1} · pper(Rn,r+1). (4.9)

But if i = n, then we obtain decomposition of parafunctions by the elements of the last row:

ddet (A) =
n
∑

s=1

{ans}Dns =
n
∑

s=1

(−1)n+s {ans} ·ddet (Rs−1,1), (4.10)

pper(A) =
n
∑

s=1

{ans}Pns =
n
∑

s=1

{ans} · pper(Rs−1,1). (4.11)

Proof. For i = 1, an inscribed rectangle degenerates into the first column of the matrix

(3.1). Thereby, considering the equalities (4.4), (4.5), because of the agreements (4.1), we

obtain the equalities (4.8), (4.9).

The equalities (4.10), (4.11) are proved in the same way.

Corollary 4.3. If all the elements of the i–th column (i ∈ {1, . . . , n}) of the triangular

matrix (3.1) are zeros, then

ddet (A) = pper(A) = 0.

Proof. The validity of this corollary follows from the fact that all factorial products of

elements of an inscribed rectangular table T (i) equal zero.
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Example 4.4. Let us find the value of the paradeterminant

Qn =





















q1
p2

q2
q2

0 p3

q3
q3

... . . . . . .
. . .

0 0 0 . . . qn−1

0 0 0 . . . pn

qn
qn





















n

, (4.12)

if q1 = 1, pi + qi = 1, i = 2, 3, . . . .

It is obvious that

Q1 = [q1] = 1,

Q2 =

[

1
p2

q2
q2

]

= p2 + q2 = 1.

Let us decompose the parapermanent (4.12) by elements of the last row. By induction

we have:

Qn = qnQn−1 + pnQn−1 = qn + pn = 1.

4.2. Properties of Parafunctions of Some Classes of Triangular Matrices

Proposition 4.1. [6]. If respective elements of all rows of an inscribed rectangular table

T (i), i = 1, . . . , n−1 of the triangular matrix (3.1) are equal, i.e., the following equalities

hold

aij = ai+1,j = . . . = anj = aj, j = 1, . . . , i, (4.13)

then this equality also holds

i
∑

s=1

{ais}Dis = −

i
∑

s=1

n
∑

r=i+1

{ars}Drs. (4.14)

For the parapermanent of such a triangular matrix, the analogous equality holds:

i
∑

s=1

{ais}Pis =

i
∑

s=1

n
∑

r=i+1

{ars}Prs. (4.15)

Proof. We prove the equality (4.14). By Definition 4.3 of an algebraic complement (see the

equality (4.4) on p.212), the expression {ais}Dis, according to the equality (4.13), equals

{ais}Dis = (−1)i+sasas+1 . . .aiddet (Rs−1,1)ddet (Rn,i+1). (4.16)

We shall consider the expression

n
∑

r=i+1

{ars}Drs.
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Since

{ars} = as . . .ai{ar,i+1}, r = i + 1, . . . , n,

then
n
∑

r=i+1

{ars}Drs =

=
n
∑

r=i+1

(−1)r+sas . . . ai{ar,i+1}ddet (Rs−1,1)ddet (Rn,r+1) =

= as . . .aiddet (Rs−1,1)

n
∑

r=i+1

(−1)r−s{ar,i+1}ddet (Rn,r+1) =

= as . . . aiddet (Rs−1,1)

n
∑

r=i+1

(−1)r−s{ar,i+1}ddet (Rn,r+1).

But the sum
n
∑

r=i+1

(−1)r+i+1{ar,i+1}ddet (Rn,r+1)

is the result of decomposition of the paradeterminant of a corner Rn,i+1 by elements of the

first column, therefore, taking into consideration the equality (4.16), we have:

n
∑

r=i+1

{ars}Drs =

= (−1)s−i−1+2ias . . .aiddet (Rs−1,1)ddet (Rn,i+1) = −{ais}Dis.

It is the last equality that proves the validity of the equality (4.14).

The equality (4.15) is proved in the same way as the equality proved above.

Corollary 4.4. If the respective elements of all rows of a rectangular table T (i), i =

1, . . . , n−1, inscribed into the triangular matrix (3.1), are equal, i.e., the conditions (4.13)

of Proposition 4.1 are true, then the paradeterminant of this triangular matrix equals zero,

and for the parapermanent the following equality holds:

pper(A) = 2 · pper(Rn,i+1)















a11

a21 a22
... · · ·

. . .

ai−1,1 ai−1,2 · · · ai−1,i−1

a1 a2 · · · ai−1 ai















. (4.17)

Proof. Let us decompose the paradeterminant of the given triangular matrix by the element

of the inscribed rectangular table T (i) :

ddet (A) =
i
∑

s=1

n
∑

r=i

{ars}Drs =
i
∑

s=1

(

{ais}Dis +
n
∑

r=i+1

{ars}Drs

)

.
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The expression in the parenthesis of the last equality equals zero because of the equality

(4.14). This is what proves the first part of the corollary.

Let us prove the second part of the corollary. Considering the equality (4.15) we obtain

the following equalities in the same way:

pper(A) =

i
∑

s=1

n
∑

r=i

{ars}Prs =

i
∑

s=1

(

{ais}Pis +

n
∑

r=i+1

{ars}Prs

)

=

= 2 · pper(Rn,i+1)

i
∑

s=1

{ais} pper(Rs−1,1).

Since the sum
i
∑

s=1

{ais} pper(Rs−1,1)

is the result of the decomposition of the parapermanent of the corner

Ri,1 =















a11

a21 a22
... · · ·

. . .

ai−1,1 ai−1,2 · · · ai−1,i−1

a1 a2 · · · ai−1 ai















by the elements of the last row, then this proves the second part of Corollary 4.4.

Corollary 4.5. If all the elements of the first column of the triangular matrix (3.1) for

(n > 1) equal a, then its paradeterminant equals zero, and the parapermanent equals

twice the product of this number by the parapermanent of the triangular matrix resulting

from deleting its first column.

Example 4.5. Let us find the values of the paradeterminants of triangular matrices

A =

(

i

i − j + 1

)

16j6i6n

, B = (j − (j − 1)δij)16j6i6n .

The values of the first column elements of these triangular matrices equal

ai1 =
i

i − 1 + 1
= 1, bi1 = 1, i = 1, 2, . . . , n.

Consequently, according to Corollary 4.5, the paradeterminants of these matrices equal 0
for n > 1. For n = 1 the paradeterminants of these triangular matrices equal 1.

Example 4.6. Let us find the value of the parapermanent of the triangular matrix











1
2a1
1
2a1

1
2a2

... . . .
. . .

1
2a1

1
2a2 . . . 1

2an











n

=

(

1

2
aj

)

16j6i6n

.
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For this purpose we apply (n − 1) times the second part of Corollary 4.5 to the given

triangular matrix. At that we obtain the following result:

pper

(

1

2
aj

)

16j6i6n

=
1

2

n
∏

i=1

ai.

If in the given triangular matrix aj = j, then, decomposing it by the elements of the last

row, we obtain the identity for the factorial:

n! =
n!

2n−1
+

n
∑

s=2

(s − 1)!sn−s+1

2n−s+1
,

or

n! =
2n−1

2n−1 − 1
·

n
∑

s=2

(s − 1)!sn−s+1

2n−s+1
.

Proposition 4.2. Given the triangular matrix (3.1), then the following equalities hold:

n
∑

r=j

{arj}Drj =ddet (Rj−1,1)ddet (Rnj), (4.18)

n
∑

r=j

{arj}Prj = pper(Rj−1,1)pper(Rnj). (4.19)

Proof.
n
∑

r=j

{arj}Drj =

n
∑

r=j

{arj} · (−1)r+jddet(Rj−1,1)ddet(Rn,r+1) =

= ddet(Rj−1,1) ·

n
∑

r=j

(−1)r+j {arj}ddet(Rn,r+1).

The last sum is the result of decomposing the paradeterminant ddet(Rnj) by the elements

of its first column, and so the equality (4.18) holds.

In the same way, the following equality is proved (4.19).

Proposition 4.3. If all the elements of the j-th column (1 < j < n) of the triangular

matrix (3.1) equal a, then its paradeterminant equals the product of a number (−a) by the

paradeterminant of the triangular matrix B, which we obtain from the given one by deleting

the j-th column and the (j − 1)-th row.

For the parapermanent of this triangular matrix, the following equality holds




















a11
...

. . .

aj−1,1 . . . aj−1,j−1

aj1 . . . aj,j−1 a
... . . . . . . . . .

. . .

an1 · · · an,j−1 a . . . ann





















=

= a · (2pper(Rj−1,1) · pper(Rn,j+1) + pper(B)).
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Proof. We shall prove the first part of this proposition. Let us decompose the paradetermi-

nant of the given triangular matrix by the elements of the inscribed rectangular table T (j).

This decomposition will include all the summands resulting from its decomposition by the

elements of the j-th column. According to Proposition 4.2, all of them are included in the

expression ddet (Rj−1,1) · ddet (Rnj), the value of which equals zero (see Corollary 4.5 on

p. 217), for ddet (Rnj) = 0. But the expression includes ddet (Rj−1,1) · ddet (Rnj) all the

summands, the multiplier of which is at least one element of the (j − 1)-th row, therefore

when finding the paradeterminant of the triangular matrix (3.1) the (j − 1)-th row may be

deleted. The rest of summands of paradeterminant decomposition by the elements of an

inscribed rectangular table has a factor a, therefore its factoring out equals deleting the j-th

column of the triangular matrix (3.1). At that the sum of indices of a key element belonging

to an inscribed rectangular table is reduced by one, and indices of the rest of key elements

remain unchanged. Consequently, deletion of the j-th column changes evenness of the sum

of indices of a key element of each summand and (−1) must be factored out.

We shall prove the second part of the proposition (4.3). Let us decompose the parap-

ermanent of the given triangular matrix by the elements of the inscribed rectangular table

T (j) :

pper(A) =

j
∑

s=1

n
∑

r=j

{ars}Prs =

j−1
∑

s=1

n
∑

r=j

{ars}Prs +

n
∑

r=j

{arj}Prj . (4.20)

The arguments, analogous to the arguments of the demonstration of the first part of this

proposition, give us the following equality

j−1
∑

s=1

n
∑

r=j

{ars}Prs = a · pper(B).

The second summand of the equality (4.20) is decomposition of the parapermanent of the

given triangular matrix by the elements of the j–th column; therefore, according to Corol-

lary (4.5), we have:

n
∑

r=j

{arj}Prj = pper(Rj−1,1) · pper(Rnj) =

= 2a · pper(Rj−1,1)pper(Rn,j+1).

Proposition 4.4. [6]. If all the elements of the ari, i–th column of the triangular matrix

(3.1) are the sum of some two elements, i.e., ari = bri + cri, where r ∈ {i, . . . , n}, then the

following equality holds

ddet





















a11

a21 a22
... . . .

. . .

ai1 ai2 . . . bii + cii

... . . . . . . . . .
. . .

an1 an2 . . . bni + cni . . . ann





















=
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ddet





















a11

a21 a22
... . . .

. . .

ai1 ai2 . . . bii

... . . . . . . . . .
. . .

an1 an2 . . . bni . . . ann





















+

+ddet





















a11

a21 a22
... . . .

. . .

ai1 ai2 . . . cii

... . . . . . . . . .
. . .

an1 an2 . . . cni . . . ann





















. (4.21)

For parapermanents, an analogous equality holds.

Proof. By the definition of the paradeterminant, each if its summands is the product of n

elements of the triangular matrix (3.1). And each of them includes one and only one element

of the i-th column as a factor. Therefore, in each of 2n−1 summands of the paradeterminant

of the left-hand member of this equality, there is a multiplier (bri + cri), r ∈ {i, . . . , n}.

Removing the parenthesis in each summand and grouping respective summands, we obtain

the right-hand member of the equality (4.4).

Remark 4.2. Using Proposition 4.4, by induction, we can prove the validity of an analogous

proposition in case of k summands b
(1)
ri + b

(2)
ri + . . . + b

(k)
ri , r ∈ {i, . . . , n}.

Proposition 4.5. [6]. If all the elements of the i–th (i ∈ {1, . . . , n}) column of the parade-

terminant of the triangular matrix (3.1) satisfy the equalities ari = k · bri, r ∈ {i, . . . , n},

then the following equality holds:

ddet





















a11

a21 a22
... . . .

. . .

ai1 ai2 . . . k · bii

... . . . . . . . . .
. . .

an1 an2 . . . k · bni . . . ann





















=

k · ddet





















a11

a21 a22
... . . .

. . .

ai1 ai2 . . . bii

... . . . . . . . . .
. . .

an1 an2 . . . bni . . . ann





















.

For parapermanents, an analogous proposition is true.
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The demonstration of this proposition is analogous to the demonstration of Proposition

4.4.

Proposition 4.6. [6]. For the block-diagonal matrix (3.3) the following equalities hold:

ddet











M1

0 M2
... . . .

. . .

0 0 . . . Ms











= ddet (M1) · . . . · ddet (Ms), (4.22)

pper











M1

0 M2
... . . .

. . .

0 0 . . . Ms











= pper(M1) · . . . · pper(Ms), (4.23)

where Mi, 1 6 i 6 s are some triangular matrices.

Proof. We shall prove the equality (4.22). Let ais,is be upper elements of matrices Ms. We

decompose the paradeterminant of the matrix (3.3) by the elements of the table T (i2). Since

the elements of this table, except the elements of the column i2, equal zero, then according

to Proposition 4.2 (equality (4.18), p. 218), we have the equality

ddet











M1

0 M2
... . . .

. . .

0 0 . . . Ms











= (M1) · ddet











M2

0 M3
... . . .

. . .

0 0 . . . Ms











.

Applying Theorem 4.1 in sequence to the tables T (i3), . . . , T (is), on the ground of Propo-

sition 4.2, we obtain the equality (4.22).

The equality (4.23) is proved in the same way.

Proposition 4.7. [6]. Let the elements of the matrix (3.1) be differentiable functions of the

variable t, then the following equalities hold:

d
dt

(ddet (A)) = ddet











a′11

a′21 a22
... . . .

. . .

a′n1 an2 . . . ann











+ (4.24)

+ddet











a11

a21 a′22
... . . .

. . .

an1 a′n2 . . . ann











+ . . . + ddet











a11

a21 a22
... . . .

. . .

an1 an2 . . . a′nn











,
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d
dt

(pper(A)) =











a′11

a′21 a22
... . . .

. . .

a′n1 an2 . . . ann











+ (4.25)

+











a11

a21 a′22
... . . .

. . .

an1 a′n2 . . . ann











+ . . . +











a11

a21 a22
... . . .

. . .

an1 an2 . . . a′nn











.

Proof. By the definition of a paradeterminant, it consists of 2n−1 summands, each of which

is the product of n factors, taken by one from each column. Let (−1)ε(a)ai11ai22 · . . . · ainn

be one of the summands of this paradeterminant. It is known that

d

dt
(ai11ai22 · . . . · ainn) =

= a′i11ai22 · . . . · ainn + ai11a
′
i22 · . . . · ainn + . . . + ai11ai22 · . . . · a

′
inn. (4.26)

We isolate the summands of paradeterminants in the right-hand member of the equality

(4.24), respective to the summands ai11ai22 · . . . · ainn and find their sum, then we obtain

the expression in the right-hand member of the equality (4.26). At that, according to the

mentioned correspondence, the sign of the summand ai11ai22 · . . . · ainn coincides with

the signs of the respective summands of the paradetrminants of the right-hand member of

the equality (4.24). By summing all the summands d
dt

((−1)ε(a)ai11ai22 · . . . · ainn) of the

left-hand of the equality (4.24) and considering the equality (4.26), we obtain the equality

(4.24). The equality (4.25) is proved similarly to the equality (4.24).

4.3. Transformations of Triangular Matrices that Fix Their Parafunctions

Proposition 4.8. For any triangular matrix (3.1) and any number k ∈ K, where K is some

number field, the following equalities hold:

ddet











a11 + k

a21 + k a22
...

...
. . .

an1 + k an2 · · · ann











n

= ddet











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











n

(4.27)











a11 − k
a21 + k a22

...
...

. . .

an1 + k an2 · · · ann











=











a11

a21 a22
...

...
. . .

an1 an2 · · · ann











. (4.28)

Proof. We shall prove the second equality of this proposition, using Proposition 4.4 and

Corollary 4.5.

pper(A) =
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









a11 + k − k
a21 + k − k a22

...
...

. . .

an1 + k − k an2 · · · ann











=











a11 + k
a21 + k a22

...
...

. . .

an1 + k an2 · · · ann











+

+











−k
−k a22

...
...

. . .

−k an2 · · · ann











=











a11 + k
a21 + k a22

...
...

. . .

an1 + k an2 · · · ann











+

+(−2k) ·











a22

a32 a33
...

...
. . .

an2 an3 · · · ann











=











a11 + k
a21 + k a22

...
...

. . .

an1 + k an2 · · · ann











+

+











−2k

0 a22
...

...
. . .

0 an2 · · · ann











=











a11 − k

a21 + k a22
...

...
. . .

an1 + k an2 · · · ann











The first equality is proved in the same way.

Proposition 4.9. If in a triangular matrix A its upper element (see Definition 3.1 ) equals

0 and any element of the first column is multiplied by some number k 6= 0, and the re-

spective element of the second column is divided by the same number, then the value of

the paradeterminant and the parapermanent of the obtained triangular matrix A′ remains

unchanged.

Proof. We shall prove the validity of this proposition for parapermanents. Let us compare

the factorial products of the elements of the first column of triangular matrices A and A′.
It is obvious that they are equal. Consequently, decompositions of the parapermanents of

these triangular matrices by the elements of the first column coincide.

For paradeterminants the demonstration is analogous.

Remark 4.3. If in the triangular matrix (3.1), in its first column, besides the upper element,

there are also zero elements, then they can be replaced with ones, but their respective ele-

ments of the second columns must be replaced with zeros. The validity of this remark is

proved by the arguments analogous to the arguments of the demonstration of Proposition

4.9.

Theorem 4.6. [9]. Given the triangular matrix

A = (ars)1≤s≤r≤n,

then the following equality holds

ddet(A) = ddet(A′), (4.29)
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where

A′ =






































a11
...

. . .

aj−1,1 . . . aj−1,j−1

aj1 . . . aj,j−1 ajj

...
...

...
...

. . .

ai−1,1 . . . ai−1,j−1 ai−1,j . . . ai−1,i−1

0 . . . 0 xij . . . ai,i−1 aii

ai+1,1 . . . ai+1,j−1 ai+1,j . . . ai+1,i−1 ai+1,i ai+1,i+1
...

...
...

...
...

...
...

...
. . .

an1 . . . an,j−1 anj . . . an,i−1 ani an,i+1 . . . ann







































,

and

xij = aij

(

1 −
ddet (R j−1

i
,1
)

ddet (Rj−1,1)

)

. (4.30)

Proof. To prove the equality (4.29) it is enough to compare an algebraic complement only

of those factorial products of the elements belonging to the i-th row and columns starting

from the first to the j-th.

In the left-hand member of the equality, we have

(

{ai1}(−1)i+1ddet (Rn,i+1) + {ai2}(−1)i+2ddet (R11)ddet (Rn,i+1)

+ . . . +{ai,j−1}(−1)i+j−1ddet(Rj−2,1)ddet(Rn,i+1)
)

+

+{aij}(−1)i+jddet (Rj−1,1)ddet(Rn,i+1) =

= {aij}(−1)i+j−1ddet(Rn,i+1) (ai,j−1ddet(Rj−2,1)−

−ai,j−2ai,j−1ddet (Rj−3,1) + . . . + (−1)j−2ai1 · . . . · ai,j−1

)

+

+{aij}(−1)i+jddet (Rj−1,1)ddet(Rn,i+1) =

= {aij}(−1)i+j−1ddet(R j−1

i
,1)ddet(Rn,i+1)+

+{aij}(−1)i+jddet(Rj−1,1)ddet(Rn,i+1) =

= {aij}(−1)i+jddet(Rn,i+1)
(

ddet(Rj−1,1)− ddet
(

R j−1

i
,1

))

.

The sum of the respective elements of the right-hand member of the equality is obvi-

ously equal to

{xij}(−1)i+jddet(Rj−1,1)ddet(Rn,i+1) =

= xij{ai,j+1}(−1)i+jddet(Rj−1,1)ddet(Rn,i+1)

Comparing the obtained sums of the right-hand and left-hand members of the equality

(4.29), we receive the equality (4.30.) We shall give one useful corollary of Theorem

4.6, which allows deflating parafunctions by one.
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Corollary 4.7. For any triangular matrix (3.1), the following is true:

�
�
��

B
B
BB

a11

a21 a22
... . . .

. . .

an1 an2 · · · ann

B
B

BB

�
�

�� n

= �
�
��

B
B
BB

(a11 − a21) · a22

(a11 − a31) · a32 a33
... . . .

. . .

(a11 − an1) · an2 an3 · · · ann

B
B

BB

�
�

�� n−1

(4.31)











a11

a21 a22
... . . .

. . .

an1 an2 · · · ann











n

=











(a11 + a21) · a22

(a11 + a31) · a32 a33
... . . .

. . .

(a11 + an1) · an2 an3 · · · ann











n−1

(4.32)

Proof. Indeed, we shall apply Theorem 4.6 for j = 2, i = 2, 3, . . . , n to the paradeter-

minant and the parapermanent of the triangular matrix (3.1) respectively, the we get the

equalities:

�
�
��

B
B
BB

a11

a21 a22
... . . .

. . .

an1 an2 . . . ann

B
B

BB

�
�

��

= �
�
�
��

B
B
B
BB

a11

0 a22

(

1 − a21

a11

)

0 a32

(

1 − a31

a11

)

a33

... . . . . . .
. . .

0 an2

(

1 − an1

a11

)

an3 . . . ann

B
B

B
BB

�
�

�
��

=











a11

a21 a22
... . . .

. . .

an1 an2 . . . ann











=





















a11

0 a22

(

1 + a21

a11

)

0 a32

(

1 + a31

a11

)

a33

... . . . . . .
. . .

0 an2

(

1 + an1

a11

)

an3 . . . ann





















from which evidently follows the proposition of the corollary.

5. On Relation of Parafunctions with Other Functions

of Matrices

5.1. On Relation of Paradeterminants to Parapermanents

Theorem 5.1. [6]. (The theorem on relation of the parapermanent to the paradeterminant).

If A is the triangular matrix (3.1), then the following equality holds

pper (aij)16j6i6n = ddet
(

(−1)δij+1aij

)

16j6i6n
. (5.1)

Complimentary Contributor Copy



226 Roman Zatorsky

Proof. By the definition of the paradeterminant of a triangular matrix, the sign of its each

summand depends on evenness of the sum of indices of all key elements. It is obvious that

the sign of the factorial product of the key element aij of the matrix
(

(−1)δij+1aij

)

16j6i6n

coincides with the sign of the expression (−1)2i. Consequently, all the summands of the

paradeterminant of the right-hand member of the equality (5.1) have the plus sign.

Corollary 5.2. For any triangular matrix (bij)16j6i6n , the following equality holds

ddet(bij)16j6i6n = pper((−1)δij+1bij)16j6i6n.

Proof. This corollary immediately follows from the equality (5.1) for aij = (−1)δij+1bij.

5.2. Relation of Paradeterminants to Determinants

The analogy of properties of determinants and paradeterminants can be explained to a

great extent by close relation between them. It turns out that in a number of cases, deter-

minants can be replaced with paradeterminants. Since to find the values of the latter ones,

it is enough to perform only
n(n−1)

2 multiplications and the same number of additions, in

many cases, the replacement of the determinant by the paradeterminant equal to it may

considerably simplify computing.

Consider the matrix in the form of

B =

















b11 1 0 . . . 0 0
b21 b22 1 . . . 0 0

b31 b32 b33 . . . 0 0
. . . . . . . . . . . . . . . . . .

bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−1 1
bn1 bn2 bn3 . . . bn,n−1 bnn

















, (5.2)

which is called a lower quasitriangular matrix.

Theorem 5.3. [5]. For any triangular matrix (3.1) The following equality holds

ddet(A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 1 0 . . . 0 0

b21 b22 1 . . . 0 0
b31 b32 b33 . . . 0 0

· · · · · · · · · · · · · · · · · ·
bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−1 1
bn1 bn2 bn3 . . . bn,n−1 bnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (5.3)

where

bij = {aij} =

i
∏

k=j

aik, 1 ≤ j ≤ i ≤ n. (5.4)

Proof. We shall prove that the algorithm:

1) if aij is a key element of a triangular matrix, then the element bij of a square matrix

belongs to the transversal;
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2) but if aik, k = j + 1, . . . , i is any derived element of the key element aij , then to the

transversal belongs unity, which is in the (k− 1)–th row and the k–th column of the square

matrix,

— establishes a one-to-one correspondence between the set of normal tuples of key

elements of a triangular matrix and the set of transversals with non-zero elements of the

lower quasitriangular matrix.

) Let us consider two factorial products of key elements ai1,j1 ai2,j2 , which belong to

one normal tuple. By the definition of a normal tuple of key elements and their factorial

product, the sets of column numbers of all the elements of these factorial products satisfy

the equality

{j1, j1 + 1, . . . , i1} ∩ {j2, j2 + 1, . . . , i2} = ∅.

Therefore, the given above the algorithm corresponds the transversal of non-zero elements

of the lower quasitriangular matrix (5.2) to each normal tuple of key elements of the trian-

gular matrix (5.2).

b) In consideration of point 1) of the given above algorithm, different transversals with

non-zero elements of the lower quasitriangular matrix correspond to different normal tuples

of key elements of a triangular matrix.

c) The number of transversals with non-zero elements of a matrix B, for n = 2, equals

two. Decompose the determinant of a lower quasitriangular matrix of order k by the ele-

ments of the first row. At that we obtain two determinants of lower triangular matrices of

order k−1. Consequently, by induction the number of transversals with non-zero elements

of the matrix (5.2), as well as the number of all normal tuples of the triangular matrix (3.1),

equals 2n−1.
d) To prove the theorem, it remains to show that the sign of the respective summands of

the paradeterminant and the determinant are the same. Let

ai1j1, ai2j2, . . . , aikjk

be some normal tuple of key elements of a triangular matrix, to which the following sign

corresponds (−1)
Pk

s=1(is+js), and the following equalities hold i1 < i2 < . . . < ik. By

the given above algorithm, to a key element aij and its derived elements corresponds an

element bij and i − j elements, which belong to the rows with the numbers less than i.

Thus, the total number of transpositions of permutation of the first indices, respective to

the given normal tuple, equals
∑k

s=1(is − js) and has the same evenness as the value of

the expression
∑k

s=1(is + js), which defines the sign of the respective summand of the

paradeterminant.

Note that this demonstration is valuable not because of its simplicity, but because of

construction of a one-to-one correspondence between the normal tuples of key elements of

a triangular matrix and transversals of non-zero elements of a lower quasitriangular matrix.

Let us give a more simple proof of this theorem.

For n = 1 and n = 2 the equality (5.3) is obviously true. Let it be true for all n =
1, 2, . . . , k − 1. Let us prove the validity of an induction condition. For this purpose, we

decompose the paradeterminant and determinant of this equality by the elements of the first
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column. After some simplifications in the right-hand member, we obtain the equality

k
∑

i=1

(−1)i+1{ai1}ddet (Rk,i+1) =

k
∑

i=1

(−1)i+1bi1 ·B

(

i i + 1 , . . . k

i i + 1 , . . . k

)

,

which proves the fulfillment of the induction condition.

Remark 5.1. In the last equality, we assume that

ddet (Rn,n+1) = B

(

n + 1 n

n + 1 n

)

= 1.

Corollary 5.4. For any lower quasitriangular matrix (5.2), it is obvious that the following

equality holds
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 1 0 . . . 0 0
b21 b22 1 . . . 0 0

b31 b32 b33 . . . 0 0
. . . . . . . . . . . . . . . . . .

bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−1 1

bn1 bn2 bn3 . . . bn,n−1 bnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

= ddet

















b11
b21
b22

b22
b31
b32

b32
b33

b33

...
...

...
. . .

bn1

bn2

bn2

bn3

bn3

bn4
· · · bnn

















. (5.5)

Remark 5.2. Note that the equality (5.5) holds even when some elements of a lower quasi-

triangular matrix equal 0, because when finding the value of the respective paradeterminant,

zeros are canceled and uncertainty disappears.

Proposition 5.1. The following equality holds
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 1 0 . . . 0 0

−a21 a22 1 . . . 0 0
a31 −a32 a33 . . . 0 0

...
...

... . . .
...

...

(−1)n−3an−2,1 (−1)n−4an−2,2 (−1)n−5an−2,3 . . . 1 0

(−1)n−2an−1,1 (−1)n−3an−1,2 (−1)n−4an−1,3 . . . an−1,n−1 1
(−1)n−1an,1 (−1)n−2an,2 (−1)n−3an,3 . . . −an,n−1 an,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 −1 0 . . . 0 0

a21 a22 −1 . . . 0 0
a31 a32 a33 . . . 0 0

...
...

... . . .
...

...

an−2,1 an−2,2 an−2,3 . . . −1 0

an−1,1 an−1,2 an−1,3 . . . an−1,n−1 −1
an,1 an,2 an,3 . . . an,n−1 an,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.6)
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Proof. For n = 1 and n = 2, it is obvious that the equality holds.

Let the equality (5.8) hold for n = 1, 2, . . . , k−1. We shall prove its validity for n = k.

Decompose the determinant of the left-hand member of the equality (5.8) by the elements

of the last column into two determinants of order (k − 1), multiply the second determinant

and each element of its last row by (−1). Apply Proposition (5.8) for n = k − 1 to both

determinants of order (k − 1) and discover that the sum of two obtained summands results

from decomposition of the determinant of the right-hand member of the equality (5.8) by

the elements of the last column.

5.3. On Relation of Permanents to Determinants

Permanents are an important notion of linear algebra and can be applied in different ar-

eas of mathematics, especially in combinatorial analysis [20]. Despite the surface simplicity

of permanents, the natural algorithm for finding their values, similar to the Gaussian algo-

rithm for finding the values of determinants, has not been discovered yet. In this context,

Polya in 1913 [21] defined the problem of finding a transformation, which could replace

permanents with determinants, and proved himself that there is no way to ascribe the signs

”+” and ”−” simultaneously to the elements of a matrix of order n, 3 ≤ n so that its

permanent turns into the determinant. After fundamental generalization of Polya’s result

given by Marcus and Minc [22], the hope to find even linear transformations, which would

transform the permanent of a matrix of order n− (3 6 n) into the determinant of the same

order, disappeared. In this regard, in [15] (p. 22-23), in principle, the following problem is

posed:

From all matrices of order n−, we are to isolate a class of matrices, for which there

is such a linear transformation on the set of their elements that the permanent of an initial

matrix equals the determinant of a transformed matrix.

Definition 5.1. Let

A = (aij)i,j=1,2,...,n

be a square matrix. Polya transformation of this matrix is distribution of signs ”+” and

”−” before its elements, which transforms the permanent into the equal determinant. This

transformation is denoted by P (A).

We shall isolate a matrix class, for which Polya transformation exists.

According to Theorem 5.3 (p. 226), for any triangular matrix (3.1) and lower quasitri-

angular matrix (5.2), the following identity holds

ddet (A) = det(B),

in which

bij = {aij} =

i
∏

k=j

aik, 1 ≤ j ≤ i ≤ n.

In this very point, there is Corollary 5.4, where the identity between the determinant

and the paradeterminant of a triangular matrix is established.
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In the first part of the proof of Theorem 5.3, the bijection between the summands of the

paradeterminant of a triangular matrix A and the summands of the determinant of a quasi-

triangular matrix B is established. In the second part of the theorem, the correspondence of

the signs of these summands is proved. Since the permanents of square matrices differ from

the determinants of these matrices only in signs, then from Corollary 5.4 of this theorem it

follows that the equality holds

per(B) = pper(A), (5.7)

where B and A are respectively the lower quasitriangular matrix (5.2) and the triangular

matrix (3.1), and

aij =
bij

bi,j+1
.

On p. 225 we proved the theorem on relation of the parapermanent to the paradetermi-

nant and its corollary on relation of the paradeterminant to the parapermanent of a triangular

matrix

ddet (aij)1≤j≤i≤n = pper((−1)δij+1 · aij)1≤j≤i≤n.

From this identity, the equality follows

pper(aij)1≤j≤i≤n = ddet ((−1)δij+1 · aij)1≤j≤i≤n.

Thus, considering the equalities (5.7) and (5.1), we obtain the following relations:

per(bij)i,j=1,2,...,n = pper

(

bij

bi,j+1

)

16j6i6n

=

= ddet

(

(−1)δij+1 bij

bi,j+1

)

16j6i6n

But since
i
∏

k=j

bik

bi,k+1
= bij,

then the identity holds

per(bij)i,j=1,2,...,n = det
(

(−1)i−jbij

)

i,j=1,2,...,n
,

and so does the following

Theorem 5.5. [12]. For the quasitriangular matrix (5.2) there is Polya transformation

P (B) = (−1)i−jbij, i, j = 1, 2, . . . , n,

i.e., the following equality holds

per(B) = det(P (B)).
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It is interesting that if in the quasitriangular matrix (5.2) at least one non-zero element

bij, i − j > −1 is added, then there is no Polya transformation for such a matrix.

Indeed, let B∗ be a square matrix obtained from the quasitriangular matrix (5.2) by

adding a non-zero element bij, 2 6 j − i. Then, due to the fact that the permanent of any

matrix does not change after rearranging any of its columns or rows, we shall proceed to a

new matrix, in which the i−th column changes places with the j−th column. At that we

obtain the permanent of a matrix, in which the blocks can be isolated in sequence on its

main diagonal:

[b11], [b22], . . . , [bi−1,i−1], [bij], [bi+1,i+1], . . . , [bj−2,j−2],





bj−1,j−2 bj−1,j−1 bj−1,i

bj,j−2 bj,j−1 bji

bj+1,j−2 bj+1,j−1 bj+1,i



 , [bj+2,j+2], . . . , [bnn].

Thus, in the initial permanent the elements of six transversals are constructed with the help

of the elements of six transversals of an isolated block




bj−1,j−2 bj−1,j−1 bj−1,i

bj,j−2 bj,j−1 bji

bj+1,j−2 bj+1,j−1 bj+1,i





and the elements of the main diagonal of this matrix. While three of them, which correspond

to even permutations, must be positive, and other three – negative. But Polya proved [21]

that one cannot place the signs in a matrix of order three in such a way7. This is what our

proposition proves.

Thus, a quasitriangular matrix is maximum in terms of the number of non-zero elements

of a matrix, for which Polya transformation does exist. Since a quasitriangular matrix con-

sists of (n2 + 3n − 2)/2 elements, then the proved theorem agrees with Gibson’s propo-

sition [23] about the fact that if (0, 1)− matrix A of order n has a positive permanent and

if the permanent A can be written in the form of the determinant, ascribing signs ± to the

elements of a matrix A, then the number of elements in A is not more than (n2 +3n−2)/2.

Let us prove one more proposition, which allows us to find new Polya transformation

for a lower quasitriangular matrix.

Proposition 5.2. The following equality holds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 1 0 . . . 0 0
−a21 a22 1 . . . 0 0

a31 −a32 a33 . . . 0 0
...

...
... . . .

...
...

(−1)n−3an−2,1 (−1)n−4an−2,2 (−1)n−5an−2,3 . . . 1 0
(−1)n−2an−1,1 (−1)n−3an−1,2 (−1)n−4an−1,3 . . . an−1,n−1 1

(−1)n−1an,1 (−1)n−2an,2 (−1)n−3an,3 . . . −an,n−1 an,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

7Let us assume that a transformation like this exists, then the number of minuses of each transversal, which

corresponds to even permutation, must be even, and the total number of minuses is even. On the other hand,

the number of minuses on each transversal, responsible for odd permutation, must be odd, and the total number

of minuses is odd, which, actually, contradicts the preceding reasoning.
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=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 −1 0 . . . 0 0
a21 a22 −1 . . . 0 0

a31 a32 a33 . . . 0 0
...

...
... . . .

...
...

an−2,1 an−2,2 an−2,3 . . . −1 0
an−1,1 an−1,2 an−1,3 . . . an−1,n−1 −1

an,1 an,2 an,3 . . . an,n−1 an,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.8)

Proof. For n = 1 and n = 2, the equality is obviously true.

Let the equality (5.8) hold for n = 1, 2, . . . , k−1. We shall prove its validity for n = k.
For this purpose, we decompose the determinant of the left-hand member of the equality

(5.8) by the elements of the last column into two determinants of order (k−1), multiply the

second determinant and each element of its last row by (−1) and apply to both determinants

of order (k− 1) Proposition (5.8) for n = k− 1. But the sum of two obtained summands is

the result of decomposition of the right-hand member of the equality (5.8) by the elements

of the last column. Thus, the following also holds

Theorem 5.6. [12]. For the quasitriangular matrix (5.2), there is Polya transformation

P (B) =











bij, 1 6 j 6 i 6 n,

−1, j − i = 1,

0, j − i > 2.

6. Some Theorems on Applying Triangular Matrix Calculus

Let us present a number of theorems on some application of triangular matrix calculus

without proving them.

Mostly, it is difficult to solve a secular equation of a linear recurrence equation. In this

case, it is useful to apply the following theorem, which is Stanley’s theorem to the point,

but formulated in terms of parapermanents (see [24], p. 301).

Theorem 6.1. [13]. Suppose we are given two vectors

a = (a1, a2, a3, . . . , ak),

b = (b0 = 1, b1, b2, . . . , bk−1).

For the sequence {un}
∞
n=0, the following three equalities are equivalent:

1. Linear recurrence equality of the k−th order

un = a1un−1 + a2un−2 + a3un−3 + . . . + akun−k, n = k, k + 1, k + 2, . . . (6.1)

with the initial conditions

u0 = b0 = 1, u1 = b1, u2 = b2, . . . , uk−1 = bk−1. (6.2)
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2.

un = pper(An) =































a1c1
a2

a1
a1c2

· · · · · ·
. . .

ak−1

ak−2

ak−2

ak−3
· · · a1ck−1

ak

ak−1

ak−1

ak−2
· · · a2

a1
a1

0 ak

ak−1
· · · a3

a2

a2

a1
a1

· · · · · · · · · · · · · · · · · ·
. . .

0 0 · · · 0 ak

ak−1
· · · a2

a1
a1































n

, (6.3)

where the corrections ci are found from equalities

ci = bi

(

i
∑

s=1

asbi−s

)−1

=
bi

ai + ai−1b1 + ai−2b2 + · · ·+ a2bi−2 + a1bi−1
, (6.4)

i = 1, . . . , k − 1;

3.

1 +

∞
∑

i=1

uiz
i =

=
1 + b1

(

1− 1
c1

)

z1 + b2

(

1− 1
c2

)

z2 + . . . + bk−1

(

1 − 1
ck−1

)

zk−1

1 − a1z − a2z2 − . . .− akzk
. (6.5)

Theorem 6.2. Suppose we are given the generating function

f(z) =
1 + d1z + d2z

2 + . . . + dk−1z
k−1

1 − a1z − a2z2 − . . .− akzk
(6.6)

of the sequence {un}
∞
n=1. Then it satisfies the recurrence equation

un = a1un−1 + a2un−2 + . . . + akuk

with the initial conditions

u0 = 1, ui =











a1 + d1
a2+d2

a1
a1

· · · · · ·
. . .

ai+di

ai−1

ai−1

ai−2
· · · a1











i

, i = 1, 2, . . . , k − 1. (6.7)

Theorem 6.3. Let K be some number field. For the triangular matrix

F =

























a
b x1

a+r
b+s

x2

x1

a
b
x1

. . . . . . . . .
a+(n−1)r
b+(n−1)s

xn

xn−1

a+(n−2)r
b+(n−2)s

xn−1

xn−2
. . . a

b
x1

0 a+(n−1)r
b+(n−1)s

xn

xn−1
. . . a+r

b+s
x2

x1

a
b
x1

. . . . . . . . . . . . . . . . . .

0 0 . . . a+(n−1)r
b+(n−1)s

xn

xn−1
. . . . . . a

b
x1

























m

,

(6.8)
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and the parameters a, b, r, s, the values of which belong to the number field K, the following

identities hold:

ddet(F ) = ♦n,m = (6.9)

=
∑

λ1+...+nλn=m

(−1)n−k k!

λ1! · . . . · λn!

(

a1{r}

b1{s}

)λ1

· . . . ·

(

an{r}

bn{s}

)λn

xλ1

1 · . . . · xλn
n ,

pper(F ) = �n,m = (6.10)

=
∑

λ1+...+nλn=m

k!

λ1! · . . . · λn!

(

a1{r}

b1{s}

)λ1

· . . . ·

(

an{r}

bn{s}

)λn

xλ1

1 · . . . · xλn
n

If A(z), B(z), X(z) are respective notations of formal power series with nonzero con-

stant term
∞
∑

i=0

aiz
i,

∞
∑

i=0

biz
i,

∞
∑

i=0

xiz
i, a0 = b0 = x0 = 1

Then the following theorems are true:

Theorem 6.4. [14]. If

X(z) =
A(z)

B(z)

then

xi =

i−1
∑

j=0

(−1)j(ai−j − bi−j) ·

〈

bs−r+1

bs−r

〉

16r6s6j

, i = 1, 2, . . . .

Here and below, we suppose that

〈

bs−r+1

bs−r

〉

16r6s60

= 1.

Theorem 6.5. [4] If X(z) = (A(z))p , here

A(z) = 1 +

∞
∑

i=1

aiz
i,

and p is some real number, then

xn = (−1)n

〈

(i− j + 1) · p − (j − 1)

(i− j) · p− j
·
ai−j+1

ai−j

〉

16j6i6n

=

=

[

(−1)δij
(i− j + 1) · p − (j − 1)

(i− j) · p − j
·
ai−j+1

ai−j

]

16j6i6n

(6.11)

Theorem 6.6. [14]. Let f and f−1 be reciprocal functions, then if the following equality

holds

f(1 + a1z + a2z
2 + a3z

3 + . . .) = 1 + b1z + b2z
2 + b3z

3 + . . . , (6.12)

Complimentary Contributor Copy



Introduction to the Theory of Triangular Matrices (Tables) 235

where

bi =

〈

τsr
as−r+1

as−r

〉

16r6s6i

, i = 1, 2, . . . , (6.13)

then the following equality also holds

f−1(1 + a1z + a2z
2 + a3z

3 + . . .) = 1 + x1z + x2z
2 + x3z

3 + . . . , (6.14)

where

xi =

〈

τ−1
s,s−r+1

as−r+1

as−r

〉

16r6s6i

, i = 1, 2, . . . . (6.15)

Remark 6.1. According to Theorem 6.6, while constructing the triangular matrix

〈

τ−1
s,s−r+1

as−r+1

as−r

〉

16r6s6i

, i = 1, 2, . . . ,

it is necessary to remember that the coefficients of its elements are inverse to the coefficients

of the elements of the triangular matrix

〈

τsr
as−r+1

as−r

〉

16r6s6i

, i = 1, 2, . . . ,

and written in each row in reverse order.

Theorem 6.7. [3]. (Theorem on composition of power series) If the formal power

series c(z) =
∑∞

i=1 ciz
i is the result of the composition of the formal power series

a(z) =
∑∞

i=1 aiz
i and b(z) =

∑∞
i=1 biz

i, then the following equalities hold:

ci =











a1

a2
...

ai











·













b1
b2
b1

b1

...
...

. . .
bi

bi−1

bi−1

bi−2
· · · b1













i

.

Theorem 6.8. [3]. (Theorem on inversion of a series) Suppose we are given two formal

power series

a(x) = y = x + a2x
2 + a3x

3 + a4x
4 + . . .

and

b(y) = x = y + b2y
2 + b3y

3 + b4y
4 + . . . ,

then the following equalities are true

bn =
1

n
· (−1)n−1

〈

(i− j + 1)n + (j − 1)

(i− j)n + j
·
ai−j+2

ai−j+1

〉

16j6i6n−1

=

=
1

n

[

(−1)δij ·
(i− j + 1)n + (j − 1)

(i− j)n + j
·
ai−j+2

ai−j+1

]

16j6i6n−1

, a1 = 1. (6.16)
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7. Conclusion

This short introduction to the Theory of Triangular Matrices (Tables) includes only its

main notions and theorems, which make it possible to become familiar with this theory

skin-deep. For a more detailed familiarization with it, the reader should consider the mono-

graph [25], where the main results obtained by the author and his students before 2010 are

systemized.

Any mathematical theory is of no importance if it is not connected with other areas of

mathematics and does not solve applied problems. In this introduction, Chapter 7 covers

these aspects where one can find a number of theorems without their proving. It should

be mentioned that with the help of parafunctions of triangular matrices, the principles of

recurrence fraction theory are established. This theory is the most natural n-dimensional

generalization of chain fractions.

References

[1] R.A. Zatorsky, Some Methods and Problems of Combinatorial Analysis (Specialized

Course in Mathematics) Ivano-Frankivsk: Lik, 2006. (in Russian).

[2] R.A.Zatorsky, On the Number of Combinations on Multisets, Bulletin of KNU, Series:

Physics and Mathematics, 3 (2000) 42–47 (in Russian).

[3] R.A.Zatorsky, Operations with Formal Power Series with Zero Constant Term, Bul-

letin of KNU, Series: Physics and Mathematics 1 (2010) 7–10 (in Russian).

[4] R.A. Zatorsky, Parafunctions and Combinatorial Identities, Herald of Chernivtsi Uni-

versity, Collection of Scientific Papers, Mathematics 336-337, pp. 79–84, Chernivtsi:

ChNU, 2007. (in Russian).

[5] A.H. Haniushkin, R.A. Zatorsky, I.I. Lishchynsky, On Paradeterminants and Parap-

ermanents, Bulletin of KNU, Series: Physics and Mathematics 1 (2005) 35–41 (in

Russian).

[6] R.A. Zatorsky, On Paradeterminants and Parapermanents of Triangular Matrices,

Mathematical Studies 17(1) (2002) 3–17 (in Russian).

[7] R.A. Zatorsky, Theory of paradeterminants and its applications, Algebra and Diskrete

Mathematics 1 (2007) 109–138.

[8] R.A. Zatorsky, Scalar Product of the Vector by the Paradeterminant of a Triangular

Matrix and Its Applications, PreCarpathian Bulletin of ShSS 1 (2008) 22-31.

[9] R.A. Zatorsky, O.R. Maliarchuk, Reduction of Paradeterminants of Triangular Matri-

ces to the k-diagonal Form, Mathematical Studies 34(1) (2010) 20–29 (in Ukrainian).

[10] R.A. Zatorsky, I.I. Lishchynsky, On the Relation of Determinants to Paradeterminants,

Mathematical Studies 25(1) (2006) 97–102 (in Russian).

Complimentary Contributor Copy



Introduction to the Theory of Triangular Matrices (Tables) 237

[11] R.A. Zatorsky, Determinants of Triangular Matrices and Trajectories on the Ferrer

Diagrams, Mathematical Notes 72(6) (2002) 834–852 (in Russian).

[12] V.Ye.Tarakanov, R.A. Zatorsky, On Relation of Determinants to Permanents, Mathe-

matical Notes 85(2) (2009) 292-299 (in Russian).

[13] R.A. Zatorsky, I.I. Lishchynsky, Application of Parapermanents to Linear Recurrence

Equations, Herald of NTUU ”KPI” 5 (2008) 122–128 (in Russian).

[14] R.A. Zatorsky, Operations with Formal Power Series with Nonzero Constant Term,

Bulletin of KNU, Series: Physics and Mathematics 1 (2008) 36–39 (in Russian).

[15] H. Minc, Permanents, Henryk Minc Cambridge University Press, 1984.

[16] R. Bellman, Introduction to matrix analysis (2nd ed.), Society for Industrial and Ap-

plied Mathematics Philadelphia, 1997.

[17] A.G. Kurosh, Higher Algebra, Mir, 1975.

[18] M. Aigner, Combinatorial Theory, New York: Springer-Verlag, 1997.

[19] J. Feder, Fractals, Plenum Press, NY, 1988.

[20] V.Ye.Tarakanov, Combinatorial Problems and (0, 1)–Matrices, in Problems of Science

and Technological Progress, Nauka, Moscow, 1985 (in Russian).

[21] G. Polya, Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt

im Strassennetz, Mathematische Annalen 84 (1921) 149–160.

[22] M. Marcus, H.Minc, On the relation between the determinant and the permanent,

Illinois J. Math. 5 (1961) 376-381.

[23] P.M. Gibson, Conversion of the permanent into the determinant, Proc. Amer. Math.

Soc. 27 (1971) 471–476.

[24] R. Stanley, Enumerative Combinatorics, second edition. Cambridge University Press,

1999.

[25] R.A. Zatorsky, Calculus of Triangular Matrices and Its Applications. Ivano-

Frankivsk, Simyk, 2010. (in Ukrainian).

Complimentary Contributor Copy



 

Complimentary Contributor Copy



In: Advances in Linear Algebra Research

Editor: Ivan Kyrchei, pp. 239-285

ISBN: 978-1-63463-565-3

c© 2015 Nova Science Publishers, Inc.

Chapter 7

RECENT DEVELOPMENTS

IN ITERATIVE ALGORITHMS FOR SOLVING LINEAR

MATRIX EQUATIONS

Masoud Hajarian∗

Department of Mathematics, Faculty of Mathematical Sciences,

Shahid Beheshti University, General Campus, Evin, Tehran, Iran

Abstract

The aim of this chapter is to present the latest developments in iterative methods for

solving linear matrix equations. The iterative methods are obtained by extending the

methods presented to solve the linear system Ax = b. Numerical examples are inves-

tigated to confirm the efficiency of the methods.

Keywords: Linear matrix equation; Sylvester matrix equation; Iterative method

AMS Subject Classification: 15A24; 93E24; 65F10; 65F30

1. Introduction

It is well-known that the linear matrix equations such as (coupled) Lyapunov, (coupled)

Sylvester, and Sylvester-transpose matrix equations are important equations which play a

fundamental role in the various fields of engineering theory, particularly in theories and ap-

plications of stability and control [31–33,71]. The Sylvester and Lyapunov matrix equations

arise in stability analysis of linear systems [53], model reduction [1] and in the solution of

the algebraic Riccati matrix equation [54]. The coupled Lyapunov matrix equations

AT
i Xi + XiAi + Qi +

N∑

j=1

pijXj = 0, Qi > 0, i ∈ {1, 2, ...,N}, (1)

∗E-mail addresses: m hajarian@sbu.ac.ir; mhajarian@aut.ac.ir
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and

Xi = AT
i (

N∑

j=1

pijXj)Ai + Qi, Qi > 0, i ∈ {1, 2, ...,N}, (2)

with unknown matrices Xi are often encountered in stability analysis of linear jump systems

with Markovian transitions [3,55]. In the analysis and design problems associated with the

linear system

ẋ(t) = Ax(t) + Bu(t),

the generalized Sylvester matrix equation

AX − XF = BY + R, (3)

is encountered [70]. Also it can be shown that certain control problems, such as

pole/eigenstructure assignment and observer design of the second-order linear systems

Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t), (4)

are closely related with the second-order Sylvester matrix equation [5,32,45–47]

MXF 2 + DXF + KX = BY. (5)

The above applications have motivated both mathematicians and engineers to construct

a large number of methods catering to solving linear matrix equations [8–12,43,48–52,62–

68,72–79].

In this chapter, we survey some of the latest developments in iterative algorithms for

solving several linear matrix equations. The outline of this chapter is as follows. In Sec-

tion 2, we propose four iterative algorithms based on the conjugate gradient method on the

normal equations (CGNE) for finding the generalized centro-symmetric and generalized

bisymmetric solutions of general matrix equations. The gradient based iterative algorithms

are proposed for solving matrix equations over the generalized centro-symmetric and gener-

alized bisymmetric matrices in Section 3. In Section 4, the least-squares QR-factorization

(LSQR) algorithms are extended for solving the generalized Sylvester-transpose and pe-

riodic Sylvester matrix equations. The matrix form of bi-conjugate gradients (Bi-CG)

and bi-conjugate residual (Bi-CR) algorithms are given to solve the generalized Sylvester-

transpose matrix equation in Section 5. In Section 6, the conjugate gradients squared (CGS)

method is developed to obtain an algorithm for solving the general coupled matrix equa-

tions. We propose the extended bi-conjugate gradient stabilized (Bi-CGSTAB) method for

finding the solutions of coupled Sylvester matrix equations in Section 7. In Section 8,

the matrix form of quasi-minimal residual variant of the Bi-CGSTAB algorithm (QMR-

CGSTAB) is proposed to find the solutions of the general coupled and periodic coupled

matrix equations. Numerical results are reported in Section 9. Finally Section 10 ends this

chapter with a brief conclusion.

In this work, we will use the following notations. Let R
m×n and SOR

n×n denote the

set of m × n real and symmetric orthogonal matrices, respectively. The symbols AT and

tr(A) represent the transpose and the trace of a matrix A, respectively. The unit matrix

of order n is denoted by In. We also write it as I , when the dimensions of this matrix is

Complimentary Contributor Copy



Recent Developments in Iterative Algorithms ... 241

clear. For an m × n matrix A, the so-called vectorization operator vec(A) is defined by the

following

vec(A) = ( aT
1 aT

2 ... aT
n )T ,

where ak is the k-th column of A. The notation A⊗B stands for the Kronecker product of

matrices A and B. A well-known property of Kronecker product is, for matrices A, B and

X with appropriate dimension

vec(AXB) = (BT ⊗ A)vec(X).

The inner product 〈., .〉 in R
m×n is defined as follows.

〈A, B〉 = tr(BT A) for A, B ∈ R
m×n.

The induced matrix norm is ||A|| =
√
〈A, A〉 =

√
tr(ATA), which is the Frobenius

norm. The generalized centro-symmetric and generalized bisymmetric matrices have wide

applications in many fields [6]. These matrices can be defined as follows.

Definition 1. Let P ∈ Rn×n and Q ∈ Rn×n be two symmetric orthogonal matrices, i.e.,

P = PT = P−1 and Q = QT = Q−1. If A = PAQ (A = AT = PAQ) then A is called a

generalized centro-symmetric (generalized bisymmetric) matrix with respect to (P, Q). The

symbol SR
n×n
P,Q (BSR

n×n
P,Q ) denotes the set of order n generalized centro-symmetric (gener-

alized bisymmetric) matrices with respect to (P, Q) where P, Q ∈ SOR
n×n. It is obvious

that every n × n (symmetric) matrix is also a generalized centro-symmetric (generalized

bisymmetric) with respect to (In, In).

2. The Matrix Form of CGNE Algorithm

In this section, first we briefly review the CGNE algorithm. Second the matrix form

of CGNE algorithm is proposed for solving various linear matrix equations. The CGNE

algorithm is known as one of the most efficient methods for finding the solution of non-

symmetric linear equations. The CGNE algorithm for solving Ax = b can be summarized

as following [2,7].

Algorithm 1. (CGNE algorithm)

x(1) initial vector, r(1) = b − Ax(1), p(1) = AT r(1),

For k = 2, 3, ...
α(k − 1) = 〈r(k−1),r(k−1)〉

〈p(k−1),p(k−1)〉
,

x(k) = x(k − 1) + α(k − 1)p(k − 1), r(k) = r(k − 1) − α(k − 1)Ap(k − 1),

β(k) = 〈r(k),r(k)〉
〈r(k−1),r(k−1)〉 ,

p(k) = AT r(k) + β(k)p(k − 1).

The CGNE algorithm is mathematically equivalent to the LSQR which possesses more

favorable numerical properties, for more details about CGNE see [2]. In recent years, vari-

ous methods based on the CGNE algorithm were proposed for solving linear matrix equa-

tions [16–21,23,24,57]. In this section, four extended CGNE algorithms are presented for

solving general matrix equations. First we consider the following problems.
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Problem 1. For given matrices Aij ∈ R
ri×nj , Bij ∈ R

nj×si , Mi ∈ R
ri×si and the symmet-

ric orthogonal matrices Rj, Sj ∈ SOR
nj×nj , find the generalized centro-symmetric matrix

group (X1, X2, ..., Xp) with Xj ∈ SR
nj×nj

Rj,Sj
, j = 1, 2, ..., p, such that

p∑

j=1

AijXjBij = Mi, i = 1, 2, ..., p. (6)

Problem 2. For given matrices Aij ∈ Rri×nj , Bij ∈ Rnj×si , Mi ∈ Rri×si and the sym-

metric orthogonal matrices Rj, Sj ∈ SOR
nj×nj , find the generalized bisymmetric matrix

group (X1, X2, ..., Xp) with Xj ∈ BSR
nj×nj

Rj ,Sj
, j = 1, 2, ..., p, such that (6) holds.

Problem 3. For given linear operators A1,A2, ...,Al from R
n×n onto R

p×q, the symmet-

ric orthogonal matrix P, Q ∈ SOR
n×n and C1, C2, ..., Cr ∈ Rp×q, find the generalized

centro-symmetric matrix X ∈ SR
n×n
P,Q such that





A1(X) = C1,

A2(X) = C2,
...

...
...

Al(X) = Cl.

(7)

Problem 4. For given linear operators A1,A2, ...,Al from R
n×n onto R

p×q, the symmet-

ric orthogonal matrix P, Q ∈ SOR
n×n and C1, C2, ..., Cr ∈ Rp×q, find the generalized

bisymmetric matrix X ∈ BSR
n×n
P,Q such that (7) holds.

Obviously, the matrix equations (6) and (7) include several linear matrix equations such

as (1)-(5). By similar ways to those in [14, 15, 41], we can extend the CGNE algorithm to

obtain the following iterative algorithms for solving Problems 1-4.

Algorithm 2. (To solve Problem 1)

Step 2.1. Choose arbitrary initial matrices Xj(1) ∈ SR
nj×nj

Rj ,Sj
for j = 1, 2, ..., p;

Step 2.2. For i = 1, 2, ..., p, calculate

R(1) =diag
“

M1 −

p
X

t=1

A1tXt(1)B1t, M2 −

p
X

t=1

A2tXt(1)B2t, ...,Mp −

p
X

t=1

AptXt(1)Bpt

”

,

Pi(1) =
1

2

n

p
X

s=1

h

A
T
si

“

Ms −

p
X

t=1

AstXt(1)Bst

”

B
T
si

i

+

p
X

s=1

h

RiA
T
si

“

Ms −

p
X

t=1

AstXt(1)Bst

”

B
T
siSi

io

,

k :=1;

Step 2.3. If ||R(k)|| = 0 or ||R(k)|| 6= 0, ||Pm(k)|| = 0 for all m = 1, 2, .., p, then stop;

else k := k + 1;
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Step 2.4. Calculate

Xi(k) =Xi(k − 1) +
||R(k − 1)||2F

Pp

t=1
||Pt(k − 1)||2F

Pi(k − 1) , i = 1, 2, ..., p,

R(k) =diag
“

M1 −

p
X

t=1

A1tXt(k)B1t, M2 −

p
X

t=1

A2tXt(k)B2t, ..., Mp −

p
X

t=1

AptXt(k)Bpt

”

=R(k − 1) −
||R(k − 1)||2F

Pp

t=1
||Pt(k − 1)||2F

×diag
“

p
X

t=1

A1tPt(k − 1)B1t,

p
X

t=1

A2tPt(k − 1)B2t, ...,

p
X

t=1

AptPt(k − 1)Bpt

”

,

Pi(k) =
1

2

h

p
X

s=1

A
T
si

“

Ms −

p
X

t=1

AstXt(k)Bst

”

B
T
si +

p
X

s=1

RiA
T
si

“

Ms −

p
X

t=1

AstXt(k)Bst

”

B
T
siSi

i

+
||R(k)||2F

||R(k − 1)||2F
Pi(k − 1), i = 1, 2, ..., p;

Step 2.5. Go to Step 2.3.

Algorithm 3. (To solve Problem 2)

Step 3.1. Choose arbitrary initial matrices Xj(1) ∈ BSR
nj×nj

Rj ,Sj
for j = 1, 2, ..., p;

Step 3.2. For i = 1, 2, ..., p, calculate

R(1) =diag
“

M1 −

p
X

t=1

A1tXt(1)B1t, M2 −

p
X

t=1

A2tXt(1)B2t, ..., Mp −

p
X

t=1

AptXt(1)Bpt

”

,

Pi(1) =
1

4

n

p
X

s=1

h

A
T
si

“

Ms −

p
X

t=1

AstXt(1)Bst

”

B
T
si

i

+

p
X

s=1

h

Bsi

“

Ms −

p
X

t=1

AstXt(1)Bst

”T

Asi

i

+

p
X

s=1

h

RiA
T
si

“

Ms −

p
X

t=1

AstXt(1)Bst

”

B
T
siSi

i

+

p
X

s=1

h

RiBsi

“

Ms −

p
X

t=1

AstXt(1)Bst

”T

AsiSi

io

,

k :=1;

Step 3.3. If ||R(k)|| = 0 or ||R(k)|| 6= 0, ||Pm(k)|| = 0 for all m = 1, 2, .., p, then stop;

else k := k + 1;

Step 3.4. Calculate

Xi(k) =Xi(k − 1) +
||R(k − 1)||2F

Pp

t=1
||Pt(k − 1)||2F

Pi(k − 1) , i = 1, 2, ..., p,

R(k) =diag
“

M1 −

p
X

t=1

A1tXt(k)B1t, M2 −

p
X

t=1

A2tXt(k)B2t, ..., Mp −

p
X

t=1

AptXt(k)Bpt

”

=R(k − 1) −
||R(k − 1)||2F

Pp

t=1
||Pt(k − 1)||2F

×diag
“

p
X

t=1

A1tPt(k − 1)B1t,

p
X

t=1

A2tPt(k − 1)B2t, ...,

p
X

t=1

AptPt(k − 1)Bpt

”

,

Pi(k) =
1

4

h

p
X

s=1

A
T
si

“

Ms −

p
X

t=1

AstXt(k)Bst

”

B
T
si +

p
X

s=1

Bsi

“

Ms −

p
X

t=1

AstXt(k)Bst

”T

Asi

+

p
X

s=1

RiA
T
si

“

Ms −

p
X

t=1

AstXt(k)Bst

”

B
T
siSi +

p
X

s=1

RiBsi

“

Ms −

p
X

t=1

AstXt(k)Bst

”T

AsiSi

i

+
||R(k)||2F

||R(k − 1)||2F
Pi(k − 1), i = 1, 2, ..., p;

Complimentary Contributor Copy



244 Masoud Hajarian

Step 3.5. Go to Step 3.3.

Algorithm 4. (To solve Problem 3)

Step 4.1. Choose an arbitrary initial matrix X(1) ∈ SR
n×n
P,Q ;

Step 4.2. Compute

Rj(1) =Cj −Aj(X(1)), for j = 1, 2, ..., l,

Q(1) =
1

2

l∑

r=1

[
AT

r (Rr(1)) + PAT
r (Rr(1))Q

]
,

k :=1;

Step 4.3. If
∑l

r=1 ||Rr(k)|| = 0 or
∑l

r=1 ||Rr(k)|| 6= 0, ||Q(k)|| = 0, then stop; else

k = k + 1;

Step 4.4. Compute

X(k) =X(k − 1) +

∑l
r=1 ||Rr(k − 1)||2

||Q(k − 1)||2
Q(k − 1);

Rj(k) =Cj −Aj(X(k))

=Rj(k − 1)−

∑l
r=1 ||Rr(k − 1)||2

||Q(k − 1)||2
Aj(Q(k − 1)), for j = 1, 2, ..., l;

Q(k) =
1

2

l∑

r=1

[
AT

r (Rr(k)) + PAT
r (Rr(k))Q

]

+

∑l
r=1 ||Rr(k)||2

∑l
r=1 ||Rr(k − 1)||2

Q(k − 1);

Step 4.5. Go to step 4.3.

Algorithm 5. (To solve Problem 4)

Step 5.1. Choose an arbitrary initial matrix X(1) ∈ BSR
n×n
P,Q ;

Step 5.2. Compute

Rj(1) =Cj −Aj(X(1)), for j = 1, 2, ..., l;

Q(1) =
1

4

l∑

r=1

{
AT

r (Rr(1)) +
[
AT

r (Rr(1))
]T

+ P
[
AT

r (Rr(1)) +
[
AT

r (Rr(1))
]T ]

Q
}

;

k :=1;

Step 5.3. If
∑l

r=1 ||Rr(k)|| = 0 or
∑l

r=1 ||Rr(k)|| 6= 0, ||Q(k)|| = 0, then stop; else

k = k + 1;
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Step 5.4. Compute

X(k) =X(k − 1) +

∑l
r=1 ||Rr(k − 1)||2

||Q(k − 1)||2
Q(k − 1);

Rj(k) =Cj −Aj(X(k))

=Rj(k − 1) −

∑l
r=1 ||Rr(k − 1)||2

||Q(k − 1)||2
Aj(Q(k − 1)), for j = 1, 2, ..., l;

Q(k) =
1

4

l∑

r=1

{
AT

r (Rr(k)) +
[
AT

r (Rr(k))
]T

+ P
[
AT

r (Rr(k)) +
[
AT

r (Rr(k))
]T ]

Q
}

+

∑l
r=1 ||Rr(k)||2

∑l
r=1 ||Rr(k − 1)||2

Q(k − 1);

Step 5.5. Go to step 5.3.

By similar proofs to those in [14,15,41], it can be proven that Algorithms 2-5 converge

within a finite number of iterations in the absence of roundoff errors. Also by using Algo-

rithms 2-5, the solvability of Problems 1-4 can be determined in the absence of roundoff

errors respectively, for more details see [14,15,41].

Recently in [42], the CGNE algorithm was also extended to the periodic discrete-time

generalized coupled Sylvester equations

{
AkXkBk + CkYkDk = Mk,

EkXk+1Fk + GkYkHk = Nk,
(8)

for k = 1, 2, ..., where the coefficient matrices Ak ∈ R
p×n, Ck ∈ R

p×m, Bk ∈ R
n×q,

Dk ∈ R
m×q, Ek ∈ R

r×n, Gk ∈ R
r×m, Fk ∈ R

n×s, Hk ∈ R
m×s, Mk ∈ R

p×q, Nk ∈
Rr×s, and the solutions Xk ∈ Rn×n , Yk ∈ Rm×m are periodic with period φ, i.e., Ak+φ =

Ak, Bk+φ = Bk , Ck+φ = Ck , Dk+φ = Dk, Ek+φ = Ek, Fk+φ = Fk , Gk+φ = Gk,

Hk+φ = Hk, Mk+φ = Mk, Nk+φ = Nk, Xk+φ = Xk and Yk+φ = Yk . This class

of periodic matrix equations contains various linear discrete-time periodic matrix equations

such as the periodic discrete-time coupled Sylvester matrix equations. The extended CGNE

algorithm to solve (8) can be summarized as follows.

Algorithm 6. (To solve (8))

Step 6.1. Choose the initial matrices Xk(1) ∈ Rn×n and Yk(1) ∈ Rm×m for

k = 1, 2, ..., φ;

Set Xφ+1(1) = X1(1);

For k = 1, 2, ..., φ compute

R1,k(1) = Mk − AkXk(1)Bk − CkYk(1)Dk,

R2,k(1) = Nk − EkXk+1(1)Fk − GkYk(1)Hk;

Set R2,0(1) = R2,φ(1), E0 = Eφ and F0 = Fφ;
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For k = 1, 2, ..., φ compute

Sk(1) = AH
k R1,k(1)BH

k + EH
k−1R2,k−1(1)FH

k−1,

Tk(1) = CH
k R1,k(1)DH

k + GH
k R2,k(1)HH

k ;

Set Sφ+1(1) = S1(1) and i := 1;

Step 6.2. If ||R1,k(i)|| = 0 and ||R2,k(i)|| = 0 for k = 1, 2, ..., φ, then stop, else, i := i+1;
For k = 1, 2, ..., φ compute

Xk(i) = Xk(i− 1) +

∑φ
j=1[||R1,j(i − 1)||2 + ||R2,j(i− 1)||2]
∑φ

j=1[||Sj(i− 1)||2 + ||Tj(i− 1)||2]
Sk(i− 1),

set Xφ+1(i) = X1(i),

Yk(i) = Yk(i − 1) +

∑φ
j=1[||R1,j(i− 1)||2 + ||R2,j(i− 1)||2]
∑φ

j=1[||Sj(i − 1)||2 + ||Tj(i − 1)||2]
Tk(i− 1),

R1,k(i) = Mk − AkXk(i)Bk − CkYk(i)Dk

= R1,k(i−1)−

∑φ
j=1[||R1,j(i − 1)||2 + ||R2,j(i − 1)||2]
∑φ

j=1[||Sj(i− 1)||2 + ||Tj(i− 1)||2]
[AkSk(i−1)Bk+CkTk(i−1)Dk],

R2,i(i) = Nk − EkXk+1(i)Fk − GkYk(i)Hk

= R2,k(i − 1) −

∑φ

j=1
[||R1,j(i − 1)||2 + ||R2,j(i − 1)||2]

∑φ
j=1

[||Sj(i − 1)||2 + ||Tj(i − 1)||2]
[EkSk+1(i − 1)Fk + GkTk(i − 1)Hk];

Set R2,0(i) = R2,φ(i) and for k = 1, 2, ..., φ compute

Sk(i) = AH
k R1,k(i)B

H
k + EH

k−1R2,k−1(i)F
H
k−1

+

∑φ
j=1[||R1,j(i)||

2 + ||R2,j(i)||
2]

∑φ
j=1[||R1,j(i− 1)||2 + ||R2,j(i− 1)||2]

Sk(i − 1),

Tk(i) = CH
k R1,k(i)D

H
k + GH

k R2,k(i)H
H
k

+

∑φ
j=1[||R1,j(i)||

2 + ||R2,j(i)||
2]

∑φ
j=1[||R1,j(i − 1)||2 + ||R2,j(i− 1)||2]

Tk(i − 1);

Set Sφ+1(i) = S1(i) and and go to Step 2.

In [42], it was shown that Algorithm 6 converges within a finite number of iterations in

the absence of roundoff errors.
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3. The Gradient Iterative Algorithms

One of the famous method for solving the linear system Ax = b is gradient based

iterative algorithm [25–27] as follows.

x(k+1) = x(k) + µAT (b − Ax(k)), 0 < µ ≤
2

||A||2
. (9)

Ding and Chen [26–28] introduced gradient based iterative algorithms and least squares

based iterative algorithm for solving (coupled) matrix equations. In [22, 25, 35, 36, 44, 75,

78], several gradient based iterative algorithms were proposed for solving linear matrix

equations. By applying Kronecker product and vectorization operator, we can generalize

the gradient based iterative algorithm (9) to solve Problems 1 and 2.

Algorithm 7. (To solve Problem 1)

Step 7.1. Choose arbitrary initial matrices Xj(1) ∈ SR
nj×nj

Rj ,Sj
for j = 1, 2, ..., p and a

parameter

0 < µ <
2∑p

i=1

∑p
j=1 ||AijBij ||2

. (10)

Compute

Rs(1) = Ms −

p∑

i=1

AsiXi(1)Bsi for s = 1, 2, ..., p;

Step 7.2. For t = 1, 2, ..., compute

Xs(t + 1) =Xs(t) +
µ

2

[ p∑

i=1

AT
isRi(t)B

T
is +

p∑

i=1

PsA
T
isRi(t)B

T
isPs

]
for s = 1, 2, ..., p,

Rs(t + 1) =Ms −

p∑

i=1

AsiXi(t + 1)Bsi for s = 1, 2, ..., p.

Algorithm 8. (To solve Problem 2)

Step 8.1. Choose arbitrary initial matrices Xj(1) ∈ BSR
nj×nj

Rj ,Sj
for j = 1, 2, ..., p and a

parameter

0 < µ <
2∑p

i=1

∑p
j=1 ||AijBij ||2

. (11)

Compute

Rs(1) = Ms −

p∑

i=1

AsiXi(1)Bsi for s = 1, 2, ..., p;
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Step 8.2. For t = 1, 2, ..., compute

Xs(t + 1) =Xs(t) +
µ

4

[ p∑

i=1

AT
isRi(t)B

T
is +

p∑

i=1

PsA
T
isRi(t)B

T
isPs

+

p∑

i=1

BisRi(t)
TAis +

p∑

i=1

PsBisRi(t)
TAisPs

]
for s = 1, 2, ..., p,

Rs(t + 1) =Ms −

p∑

i=1

AsiXi(t + 1)Bsi for s = 1, 2, ..., p.

Similar to the proofs in [22,35,36,44], we can show that Algorithms 7 and 8 converge.

4. The Matrix Form of LSQR Algorithms

Based on the Golub-Kahan bidiagonalization process, two different forms of the LSQR

method are presented for computing the solution x of the linear systems Ax = b and uncon-

strained least-squares problem minx ||Ax − b||. The LSQR algorithms can be summarized

as follows [56].

Algorithm 9. (The variant 1 of LSQR method)

τ(0) := 1; ξ(0) := −1; ω(0) := 0; w(0) := 0; z(0) := 0;

β(1)u(1) = b; α(1)v(1) = AT u(1);

For i = 1, 2, ..., until convergence, do:

ξ(i) = −ξ(i− 1)β(i)/α(i);

z(i) = z(i− 1) + ξ(i)v(i);

w(i) = (τ(i − 1)− β(i)w(i− 1))/α(i);

ω(i) = ω(i− 1) + w(i)v(i);

β(i + 1)u(i + 1) = Av(i)− α(i)u(i);

τ(i) = −τ(i− 1)α(i)/β(i + 1);

α(i + 1)v(i + 1) = AT u(i + 1)− β(i + 1)v(i);

γ(i) = β(i + 1)ξ(i)/(β(i+ 1)w(i)− τ(i));

x(i) = z(i)− γ(i)ω(i).

Algorithm 10. (The variant 2 of LSQR method)

θ(1)v(1) = AT b; ρ(1)p(1) = Av(1);

ω(1) = v(1)/ρ(1); ξ(1) = θ(1)/ρ(1); x(1) = ξ(1)ω(1);

For i = 1, 2, ..., until convergence, do:

θ(i + 1)v(i + 1) = AT p(i)− ρ(i)v(i);

ρ(i + 1)p(i + 1) = Av(i + 1) − θ(i + 1)p(i);

ω(i + 1) = (v(i + 1) − θ(i + 1)ω(i))/ρ(i+ 1);

ξ(i + 1) = −ξ(i)θ(i + 1)/ρ(i + 1);

x(i + 1) = x(i) + ξ(i + 1)ω(i + 1).

In this section, first we obtain the matrix form of the above LSQR methods for solving
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the generalized Sylvester-transpose matrix equation

p∑

k=1

(AkXBk + CkXTDk) +

q∑

j=1

(EjY Fj + GjY
T Hj) = M, (12)

and the minimum Frobenius norm residual problem

||M −

p∑

k=1

(AkXBk + CkXTDk)−

q∑

j=1

(EjY Fj + GjY
T Hj)||. (13)

where Ak, Ck ∈ R
s×n, Bk, Dk ∈ R

n×t, Ej, Gj ∈ R
s×m, Fj, Gj ∈ R

m×t and M ∈ R
s×t

are known matrices and X ∈ Rn×n , Y ∈ Rm×m are the matrices to be determined. Second

we present the matrix form of the LSQR methods for finding solutions of the periodic

Sylvester matrix equation

ÃlX̃lB̃l + ClX̃l+1D̃l = Ẽl, (14)

for l = 1, 2, ..., where the coefficient matrices Ãl, C̃l ∈ R
p1×n, B̃l, D̃l ∈ Rn×q1 , Ẽl ∈

R
p1×q1 and the solutions X̃l ∈ R

n×n are periodic with period λ, i.e., Ãl+λ = Ãl, B̃l+λ =
B̃l, C̃l+λ = C̃l , D̃l+λ = D̃l, Ẽl+λ = Ẽl and X̃l+λ = X̃l.

By using the Kronecker product, we can transform the generalized Sylvester-transpose

matrix equation (12) into the following linear system

( ∑p
k=1(B

T
k ⊗ Ak + (DT

k ⊗ Ck)P )
∑q

j=1(F
T
j ⊗ Ej + (HT

j ⊗ Gj)Q)
)

︸ ︷︷ ︸
A

×

(
vec(X)

vec(Y )

)

︸ ︷︷ ︸
x

=
(

vec(M)
)

︸ ︷︷ ︸
b

, (15)

where P ∈ Rst×n2

and Q ∈ Rst×m2

are unitary matrices [80]. It is obvious that the size

of the above linear systems is large. The LSQR methods will consume more computer

time and memory space once the size of the linear systems is large. To overcome the com-

plications, we directly develop the LSQR methods for solving the generalized Sylvester-

transpose matrix equation (12) and the minimum Frobenius norm residual problem (13).

By considering the linear systems (15), we rewrite the vectors u(i), v(i), p(i), z(i), ω(i),

Av(i), AT p(i) and AT u(i) of Algorithms 9 and 10 in the matrix forms. For Algorithm 9,

we can write

β(1)u(1) = b → β(1)u(1) = vec(M), (16)

α(1)v(1) = AT u(1) → α(1)v(1)

=
( ∑p

k=1(B
T
k ⊗ Ak + (DT

k ⊗ Ck)P )
∑q

j=1(F
T
j ⊗ Ej + (HT

j ⊗ Gj)Q)
)T

u(1)

=

(∑p
k=1(Bk ⊗ AT

k + P (Dk ⊗ CT
k ))∑q

j=1(Fj ⊗ ET
j + Q(Hj ⊗ GT

j ))

)
u(1), (17)

β(i + 1)u(i + 1) = Av(i)− α(i)u(i) → β(i + 1)u(i + 1)
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=
( ∑p

k=1
(BT

k ⊗ Ak + (DT
k ⊗ Ck)P )

∑q
j=1

(F T
j ⊗ Ej + (HT

j ⊗ Gj)Q)
)
v(i) − α(i)u(i),

(18)

α(i + 1)v(i + 1) = ATu(i + 1) − β(i + 1)v(i) → α(i + 1)v(i + 1)

=

(∑p
k=1(Bk ⊗ AT

k + P (Dk ⊗ CT
k ))∑q

j=1(Fj ⊗ ET
j + Q(Hj ⊗ GT

j ))

)
u(i + 1)− β(i + 1)v(i). (19)

By considering (68)-(71), we define

u(i) = vec(U(i)), v(i) =

(
vec(V1(i))
vec(V2(i))

)
, (20)

where U(i)Rs×t, V1(i)R
n×n and V2(i)R

m×m for i = 0, 1, .... This implies that

β(1)U(1) = M, (21)

α(1)V1(1) =

p
X

k=1

(AT
k U(1)BT

k + DkU(1)T
Ck), α(1)V2(1) =

q
X

j=1

(ET
j U(1)F T

j + HjU(1)T
Gj), (22)

β(i+1)U(i+1) =

p
X

k=1

(AkV1(i)Bk +CkV1(i)
T
Dk)+

q
X

j=1

(EjV2(i)Fj +GjV2(i)
T
Hj)−α(i)U(i), (23)

α(i + 1)V1(i + 1) =

p∑

k=1

(AT
k U(i + 1)BT

k + DkU(i + 1)TCk) − β(i + 1)V1(i), (24)

α(i + 1)V2(i + 1) =

q∑

j=1

(ET
j U(i + 1)FT

j + HjU(i + 1)TGj) − β(i + 1)V2(i). (25)

By applying (20)-(25), we can develop Algorithm 9 for solving (12) and (13) as follows.

Algorithm 11. (The variant 1 of matrix LSQR method to solve (12) and (13))

τ(0) := 1; ξ(0) := −1; Ω1(0) := 0; Ω2(0) := 0; w(0) := 0; Z1(0) :=
0; Z2(0) := 0; X(0) := 0; Y (0) := 0;

β(1) = ||M ||; U(1) = M/β(1);

α(1) = (||
∑p

k=1(A
T
k U(1)BT

k + DkU(1)TCk)||2 + ||
∑q

j=1(E
T
j U(1)FT

j +

HjU(1)TGj)||
2)1/2;

α(1)V1(1) =
∑p

k=1(A
T
k U(1)BT

k + DkU(1)TCk), α(1)V2(1) =
∑q

j=1(E
T
j U(1)FT

j +

HjU(1)TGj);

For i = 1, 2, ..., until convergence, do:

ξ(i) = −ξ(i− 1)β(i)/α(i);

Z1(i) = Z1(i − 1) + ξ(i)V1(i);
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Z2(i) = Z2(i − 1) + ξ(i)V2(i);

w(i) = (τ(i − 1)− β(i)w(i− 1))/α(i);

Ω1(i) = Ω1(i− 1) + w(i)V1(i);

Ω2(i) = Ω2(i− 1) + w(i)V2(i);

β(i + 1) = ||
∑p

k=1(AkV1(i)Bk + CkV1(i)
TDk) +

∑q
j=1(EjV2(i)Fj + GjV2(i)

THj) −

α(i)U(i)||;

β(i + 1)U(i + 1) =
∑p

k=1(AkV1(i)Bk + CkV1(i)
TDk) +

∑q
j=1(EjV2(i)Fj +

GjV2(i)
THj) − α(i)U(i);

τ(i) = −τ(i− 1)α(i)/β(i + 1);

α(i + 1) = (||
∑p

k=1(A
T
k U(i + 1)BT

k + DkU(i + 1)TCk) − β(i + 1)V1(i)||
2

+ ||
∑q

j=1(E
T
j U(i + 1)FT

j + HjU(i + 1)TGj) − β(i + 1)V2(i)||
2)1/2;

α(i + 1)V1(i + 1) =
∑p

k=1(A
T
k U(i + 1)BT

k + DkU(i + 1)TCk) − β(i + 1)V1(i);

α(i + 1)V2(i + 1) =
∑q

j=1(E
T
j U(i + 1)FT

j + HjU(i + 1)TGj) − β(i + 1)V2(i);

γ(i) = β(i + 1)ξ(i)/(β(i+ 1)w(i)− τ(i));

X(i) = Z1(i)− γ(i)Ω1(i);

Y (i) = Z2(i)− γ(i)Ω2(i).

Similarly for Algorithm 10, we can obtain

θ(1)v(1) = AT b → θ(1)v(1) =

(∑p
k=1(Bk ⊗ AT

k + P (Dk ⊗ CT
k ))∑q

j=1(Fj ⊗ ET
j + Q(Hj ⊗ GT

j ))

)
vec(M), (26)

ρ(1)p(1) = Av(1) → ρ(1)p(1)

=
( ∑p

k=1(B
T
k ⊗ Ak + (DT

k ⊗ Ck)P )
∑q

j=1(F
T
j ⊗ Ej + (HT

j ⊗ Gj)Q)
)
v(1), (27)

θ(i + 1)v(i + 1) = ATp(i)− ρ(i)v(i) → θ(i + 1)v(i + 1)

=

(∑p
k=1(Bk ⊗ AT

k + P (Dk ⊗ CT
k ))∑q

j=1(Fj ⊗ ET
j + Q(Hj ⊗ GT

j ))

)
p(i)− ρ(i)v(i) (28)

ρ(i + 1)p(i + 1) = Av(i + 1) − θ(i + 1)p(i) → ρ(i + 1)p(i + 1)

=
` Pp

k=1
(BT

k ⊗ Ak + (DT
k ⊗ Ck)P )

Pq

j=1
(F T

j ⊗ Ej + (HT
j ⊗ Gj)Q)

´

v(i + 1) − θ(i + 1)p(i).
(29)
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From (26)-(29), we define

P (i) = vec(P (i)), v(i) =

(
vec(V1(i))

vec(V2(i))

)
, (30)

where P (i)Rs×t, V1(i)R
n×n and V2(i)R

m×m for i = 1, 2, .... We can get

θ(1)V1(1) =

p∑

k=1

(AT
k MBT

k + DkM
TCk), θ(1)V2(1) =

q∑

j=1

(ET
j MFT

j + HjM
TGj),

(31)

ρ(1)P (1) =

p∑

k=1

(AkV1(1)Bk + CkV1(1)TDk) +

q∑

j=1

(EjV2(1)Fj + GjV2(1)THj), (32)

θ(i + 1)V1(i + 1) =

p∑

k=1

(AT
k PiB

T
k + DkP

T
i Ck) − ρ(i)V1(i + 1), (33)

θ(i + 1)V2(i + 1) =

q∑

j=1

(ET
j PiF

T
j + HjP

T
i Gj) − ρ(i)V2(i + 1), (34)

ρ(i + 1)P (i + 1) =

p∑

k=1

(AkV1(i + 1)Bk + CkV1(i + 1)TDk)

+

q∑

j=1

(EjV2(i + 1)Fj + GjV2(i + 1)THj) − θ(i + 1)P (i). (35)

By considering (31)-(35), we can extend Algorithm 10 for solving (12) and (13) as follows.

Algorithm 12. (The variant 2 of matrix LSQR method to solve (12) and (13))

θ(1) = (||
∑p

k=1(A
T
k MBT

k + DkM
T Ck)||2 + ||

∑q
j=1(E

T
j MFT

j + HjM
T Gj)||

2)1/2;

θ(1)V1(1) =
∑p

k=1(A
T
k MBT

k +DkM
T Ck), θ(1)V2(1) =

∑q
j=1(E

T
j MFT

j +HjM
TGj);

ρ(1) = ||
∑p

k=1(AkV1(1)Bk + CkV1(1)TDk) +
∑q

j=1(EjV2(1)Fj + GjV2(1)THj)||;

ρ(1)P (1) =
∑p

k=1(AkV1(1)Bk + CkV1(1)TDk) +
∑q

j=1(EjV2(1)Fj + GjV2(1)THj);

Ω1(1) = V1(1)/ρ(1); Ω2(1) = V2(1)/ρ(1); ξ(1) = θ(1)/ρ(1); X(1) =

ξ(1)Ω1(1); Y (1) = ξ(1)Ω2(1);

For i = 1, 2, ..., until convergence, do:

θ(i + 1) = (||
∑p

k=1(A
T
k PiB

T
k + DkP

T
i Ck) − ρ(i)V1(i + 1)||2 + ||

∑q
j=1(E

T
j PiF

T
j +

HjP
T
i Gj) − ρ(i)V2(i + 1)||2)1/2;

θ(i + 1)V1(i + 1) =
∑p

k=1(A
T
k PiB

T
k + DkP

T
i Ck)− ρ(i)V1(i + 1);
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θ(i + 1)V2(i + 1) =
∑q

j=1(E
T
j PiF

T
j + HjP

T
i Gj)− ρ(i)V2(i + 1);

ρ(i + 1) = ||
∑p

k=1(AkV1(i + 1)Bk + CkV1(i + 1)TDk) +
∑q

j=1(EjV2(i + 1)Fj +

GjV2(i + 1)THj) − θ(i + 1)P (i)||;

ρ(i+1)P (i+1) =
∑p

k=1(AkV1(i+1)Bk +CkV1(i+1)TDk)+
∑q

j=1(EjV2(i+1)Fj +

GjV2(i + 1)THj) − θ(i + 1)P (i);

Ω1(i + 1) = (V1(i + 1) − θ(i + 1)Ω1(i))/ρ(i + 1); Ω2(i + 1) = (V2(i + 1) −
θ(i + 1)Ω2(i))/ρ(i + 1);

ξ(i + 1) = −ξ(i)θ(i + 1)/ρ(i + 1);

X(i + 1) = X(i) + ξ(i + 1)Ω1(i + 1);

Y (i + 1) = Y (i) + ξ(i + 1)Ω2(i + 1).

The stopping criteria on the above algorithms can be used as

||M −

p∑

k=1

(AkX(i)Bk + CkX(i)TDk)−

q∑

j=1

(EjY (i)Fj + GjY (i)THj)|| ≤ ε,

where ε > 0 is a small tolerance.

We can easily show that the periodic Sylvester matrix equation (14) is equivalent to the

following Sylvester matrix equation

AXB + CXD = E , (36)

where

A =




0 · · · 0 Ã1

Ã2 0
. . .

...

0 Ãλ 0


 , B =




0 B̃2 0
...

. . .

0 B̃λ

B̃1 0 · · · 0


 , C = diag

(
C̃1, C̃2, ..., C̃λ

)
,

D = diag
(
D̃1, D̃2, ..., D̃λ

)
, E = diag

(
Ẽ1, Ẽ2, ..., Ẽλ

)
, X = diag

(
X̃2, X̃3, ..., X̃λ, X̃1

)
.

By Algorithms 11 and 12, we can compute the solutions of the Sylvester matrix equation

(36). But obviously the size of (36) is also large. By considering (14), (36) and applying Al-

gorithms 11 and 12, we propose the following algorithms for solving the periodic Sylvester

matrix equation (14).

Algorithm 13. (The variant 1 of matrix LSQR method to solve (14))

τ(0) := 1; ξ(0) := −1; w(0) := 0; Ωl(0) := 0; Zl(0) := 0; X̃l(0) :=
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0, for l = 1, 2, ..., λ;

β(1) = (
∑λ

l ||Ẽl||
2)1/2; Ul(1) = Ẽl/β(1) for l = 1, 2, ..., λ;

Set C̃0 = C̃λ, D̃0 = D̃λ, U0(1) = Uλ(1);

α(1) = (
∑λ

l=1 ||Ã
T
l Ul(1)B̃T

l + C̃T
l−1Ul−1(1)D̃T

l−1||
2)1/2;

α(1)Vl(1) = ÃT
l Ul(1)B̃T

l + C̃T
l−1Ul−1(1)D̃T

l−1, for l = 1, 2, ..., λ;

Set Vλ+1(1) = V1(1);

For i = 1, 2, ..., until convergence, do:

ξ(i) = −ξ(i− 1)β(i)/α(i);

Zl(i) = Zl(i− 1) + ξ(i)Vl(i), for l = 1, 2, ..., λ;

w(i) = (τ(i − 1)− β(i)w(i− 1))/α(i);

Ωl(i) = Ωl(i − 1) + w(i)Vl(i), for l = 1, 2, ..., λ;

β(i + 1) = (
∑λ

l=1 ||ÃlVl(i)B̃l + C̃lVl+1(i)D̃l − α(i)Ul(i)||
2)1/2;

β(i + 1)Ul(i + 1) = ÃlVl(i)B̃l + C̃lVl+1(i)D̃l − α(i)Ul(i), for l = 1, 2, ..., λ;

τ(i) = −τ(i− 1)α(i)/β(i + 1);

Set U0(i + 1) = Ul(i + 1);

α(i + 1) = (
∑λ

l=1 ||Ã
T
l Ul(i + 1)B̃T

l + C̃T
l−1Ul−1(i + 1)D̃T

l−1 − β(i + 1)Vl(i)||
2)1/2;

α(i + 1)Vl(i + 1) = ÃT
l Ul(i + 1)B̃T

l + C̃T
l−1Ul−1(i + 1)D̃T

l−1 − β(i + 1)Vl(i),

for l = 1, 2, ..., λ;

Set Vλ+1(i + 1) = V1(i + 1);

γ(i) = β(i + 1)ξ(i)/(β(i+ 1)w(i)− τ(i));

X̃l(i) = Zl(i)− γ(i)Ωl(i), for l = 1, 2, ..., λ;

Set X̃λ+1(i) = X̃1(i).

Algorithm 14. (The variant 2 of matrix LSQR method to solve (14))

Set C̃0 = C̃λ, D̃0 = D̃λ, Ẽ0 = Ẽλ;
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θ(1) = (
∑λ

l=1 ||Ã
T
l ẼlB̃

T
l + C̃T

l−1Ẽl−1D̃
T
l−1||

2)1/2;

θ(1)Vl(1) = ÃT
l ẼlB̃

T
l + C̃T

l−1Ẽl−1D̃
T
l−1, for l = 1, 2, ..., λ;

ρ(1) = (
∑λ

l=1 ||ÃlVl(i)B̃l + C̃lVl+1(i)D̃l||
2)1/2;

ρ(1)Pl(1) = ÃlVl(1)B̃l + C̃lVl+1(1)D̃l, for l = 1, 2, ..., λ;

Ωl(1) = Vl(1)/ρ(1); ξ(1) = θ(1)/ρ(1); Xl(1) = ξ(1)Ωl(1), for l = 1, 2, ..., λ;

For i = 1, 2, ..., until convergence, do:

Set P0(i) = Pλ(i);

θ(i + 1) = (
∑λ

l=1 ||Ã
T
l Pl(i)B̃

T
l + C̃T

l−1Pl−1(i)D̃
T
l−1 − ρ(i)Vl(i + 1)||2)1/2;

θ(i+1)Vl(i+1) = ÃT
l Pl(i)B̃

T
l + C̃T

l−1Pl−1(i)D̃
T
l−1−ρ(i)Vl(i+1), for l = 1, 2, ..., λ;

Set Vλ+1(i + 1) = V1(i + 1);

ρ(i + 1) = (
∑λ

l=1 ||ÃlVl(i + 1)B̃l + C̃lVl+1(i + 1)D̃l − θ(i + 1)Pl(i)||
2)1/2;

ρ(i+1)Pl(i+1) = ÃlVl(i+1)B̃l + C̃lVl+1(i+1)D̃l −θ(i+1)Pl(i), for l = 1, 2, ..., λ;

Ωl(i + 1) = (Vl(i + 1)− θ(i + 1)Ωl(i))/ρ(i+ 1), for l = 1, 2, ..., λ;

ξ(i + 1) = −ξ(i)θ(i + 1)/ρ(i + 1);

X̃l(i + 1) = X̃l(i) + ξ(i + 1)Ωl(i + 1), for l = 1, 2, ..., λ;

Set X̃λ+1(i + 1) = X̃1(i + 1).

The stopping criteria on Algorithms 13 and 14 can be used as

√√√√
λ∑

l=1

||Ẽl − ÃlX̃l(i)B̃l − C̃lX̃l+1(i)D̃l||2 ≤ ε,

where ε > 0 is a small tolerance.

5. The Matrix Form of Bi-CG and Bi-CR Algorithms

To solve nonsymmetric linear systems Ax = b where A is an m×m real nonsymmetric

matrix and b is an m-vector, the Bi-CG and Bi-CR methods have been proposed as an

extension of CG and CR, respectively.

First we present the Bi-CG algorithm and then based on the Bi-CG derivation, we present
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the Bi-CR algorithm. There are several ways to derive the algorithm of Bi-CG. Here we

give the details of one of the simplest derivations [61]. By using Ax = b and a dual linear

system ATx∗ = b∗, we obtain the following 2m × 2m symmetric linear system

(
O A

AT O

)(
x∗

x

)
=

(
b

b∗

)
, or Âx̂ = b̂. (37)

Now for solving (37), we apply the CG algorithm with the following preconditioner:

P =

(
O I

I O

)
. (38)

Hence the resulting algorithm at the n-th iteration step can be written as:

p̂n = P−1 r̂n + βn−1p̂n−1,

αn =
(P−1r̂n, r̂n)

(p̂n, Âp̂n)
,

x̂n+1 = x̂n + αnp̂n,

r̂n+1 = r̂n − αnÂp̂n,

βn =
(P−1 r̂n+1, r̂n+1)

(P−1 r̂n, r̂n)
.

Substituting P−1 of (38) and the vectors

x̂n :=

(
x∗

n

xn

)
r̂n :=

(
r∗n
rn

)
p̂n :=

(
p∗n
pn

)
, (39)

into the previous recurrences, we obtain the following Bi-CG algorithm [58].

Algorithm 15. (Bi-CG algorithm)

x0 is an initial guess, r0 = b − Ax0,

choose r∗0 (for example r∗0 = r0),

set p∗−1 = p−1 = 0, β−1 = 0,

for n = 0, 1, ..., until convergence, do:

pn = rn + βn−1pn−1,

p∗n = r∗n + βn−1p
∗
n−1,

sn = Apn,

s∗n = AT p∗n,

αn = 〈r∗n,rn〉
〈p∗n,sn〉

,

xn+1 = xn + αnpn,

rn+1 = rn − αnsn,

r∗n+1 = r∗n − αns∗n,

βn =
〈r∗n+1,rn+1〉

〈r∗n,rn〉
.
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By using the preconditioned CR method with the preconditioner (38) to symmetric

linear system (37), we have

p̂n = P−1 r̂n + βn−1p̂n−1,

αn =
(P−1r̂n, ÂP−1 r̂n)

(P−1Âp̂n, Âp̂n)
,

x̂n+1 = x̂n + αnp̂n,

r̂n+1 = r̂n − αnÂp̂n,

βn =
P−1 r̂n+1, ÂP−1r̂n+1

(P−1r̂n, ÂP−1r̂n)
.

Substituting P−1 of (38) and vectors (39) into the previous recurrences, we obtain the

following Bi-CR algorithm [58].

Algorithm 16. (Bi-CR algorithm)

x0 is an initial guess, r0 = b − Ax0,

choose r∗0 (for example r∗0 = r0),

set p∗−1 = p−1 = 0, β−1 = 0,

for n = 0, 1, ..., until convergence, do:

pn = rn + βn−1pn−1,

p∗n = r∗n + βn−1p
∗
n−1,

sn = Apn,

s∗n = AT p∗n,

tn = Arn,

αn = 〈r∗n,tn〉
〈s∗n,sn〉

,

xn+1 = xn + αnpn,

rn+1 = rn − αnsn,

r∗n+1 = r∗n − αns∗n,

tn+1 = Arn+1,

βn =
〈r∗n+1,tn+1〉

〈r∗n,tn〉
.

In [37], Algorithms 15 and 16 were developed to solve the generalized Sylvester-

transpose matrix equation
p∑

i=1

(AiXBi + CiX
TDi) = E, (40)

where Ai, Bi, Ci, Di, E ∈ R
m×m (i = 1, 2, ..., p) and X ∈ R

m×m. By using Kronecker

product and vectorization operator, the generalized Sylvester-transpose matrix equation

(40) can be transformed into the following nonsymmetric linear systems

( ∑p
i=1(B

T
i ⊗ Ai + (DT

i ⊗ Ci)P )
)

︸ ︷︷ ︸
A

vec(X)︸ ︷︷ ︸
x

= vec(E)︸ ︷︷ ︸
b

, (41)

where A ∈ R
m2×m2

, x, b ∈ R
m2

and P ∈ R
m2×m2

is a unitary matrix [80]. It is obvious

that the size of the above system is large. However, iterative methods will consume more
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computer time and memory space once the size of the system is large. To overcome this

complication, Algorithms 15 and 16 are directly extend to solve (40). By considering the

linear systems (41) and using the vectorization operator, we rewrite vectors rn, r∗n, pn, p∗n,

sn, s∗n, tn and xn of Algorithms 15 and 16 into the matrix forms. We can write

r0 = b − Ax0 → r0 = vec(E)

−
(∑p

i=1(B
T
i ⊗ Ai + (DT

i ⊗ Ci)P )
)
x0, (42)

sn = Apn → sn

=
(∑p

i=1(B
T
i ⊗ Ai + (DT

i ⊗ Ci)P )
)
pn, (43)

s∗n = AT p∗n → s∗n

=
(∑p

i=1(B
T
i ⊗ Ai + (DT

i ⊗ Ci)P )
)T

p∗n

=
(∑p

i=1(Bi ⊗ AT
i + P (Di ⊗ CT

i ))
)
p∗n, (44)

tn = Arn → tn

=
(∑p

i=1(B
T
i ⊗ Ai + (DT

i ⊗ Ci)P )
)
rn. (45)

By considering (42)-(45), we define:

xn = vec(Xn), sn = vec(Sn), (46)

pn = vec(Pn), rn = vec(Rn), (47)

s∗n = vec(S∗
n), p∗n = vec(P ∗

n), (48)

r∗n = vec(R∗
n), and tn = vec(Tn), (49)

where Xn, Sn, S∗
n, Rn, R∗

n, Pn, P ∗
n, Tn ∈ R

m×m. From (46)-(49), we can get

R0 = E −

p∑

i=1

(AiX0Bi + CiX
T
0 Di), (50)

Sn =

p∑

i=1

(AiPnBi + CiP
T
n Di), (51)

S∗
n =

p∑

i=1

(AT
i P ∗

nBT
i + DiP

∗T
n Ci), (52)

Tn =

p∑

i=1

(AiRnBi + CiR
T
n Di), (53)

Pn = Rn + βn−1Pn−1, P ∗
n = R∗

n + βn−1P
∗
n−1 (54)

Xn+1 = Xn + αnPn, (55)

Rn+1 = Rn − αnSn, R∗
n+1 = R∗

n − αnS∗
n. (56)
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For Algorithms 15 and 16, parameters αn and βn can be determined respectively as

αn =
〈r∗n, rn〉

〈p∗n, sn〉
=

〈vec(R∗
n), vec(Rn)〉

〈vec(P ∗
n), vec(Sn)〉

=
〈R∗

n, Rn〉

〈P ∗
n, Sn〉

, (57)

βn =
〈r∗n+1, rn+1〉

〈r∗n, rn〉
=

〈vec(R∗
n+1), vec(Rn+1)〉

〈vec(R∗
n), vec(Rn)〉

=
〈R∗

n+1, Rn+1〉

〈R∗
n, Rn〉

, (58)

and

αn =
〈r∗n, tn〉

〈s∗n, sn〉
=

〈vec(R∗
n), vec(Tn)〉

〈vec(S∗
n), vec(Sn)〉

=
〈R∗

n, Tn〉

〈S∗
n, Sn〉

, (59)

βn =
〈r∗n+1, tn+1〉

〈r∗n, tn〉
=

〈vec(R∗
n+1), vec(Tn+1)〉

〈vec(R∗
n), vec(Tn)〉

=
〈R∗

n+1, Tn+1〉

〈R∗
n, Tn〉

. (60)

Here by applying (46)-(60), we present the matrix form of Algorithms 15 and 16 for finding

the solution of (40).

Algorithm 17. (Matrix form of Bi-CG algorithm to solve (40))

X0 ∈ R
m×m is an initial guess and

R0 = E −
∑p

i=1(AiX0Bi + CiX
T
0 Di),

choose R∗
0 (for example R∗

0 = R0),

set P ∗
−1 = P−1 = 0, β−1 = 0,

for n = 0, 1, ..., until convergence, do:

Pn = Rn + βn−1Pn−1,

P ∗
n = R∗

n + βn−1P
∗
n−1,

Sn =
∑p

i=1(AiPnBi + CiP
T
n Di),

S∗
n =

∑p
i=1(A

T
i P ∗

nBT
i + DiP

∗T
n Ci),

αn = 〈R∗

n,Rn〉
〈P∗

n ,Sn〉
,

Xn+1 = Xn + αnPn,

Rn+1 = Rn − αnSn,

R∗
n+1 = R∗

n − αnS∗
n,

βn =
〈R∗

n+1
,Rn+1〉

〈R∗

n,Rn〉
.

Algorithm 18. (Matrix form of Bi-CR algorithm to solve (40))

X0 ∈ Rm×m is an initial guess and

R0 = E −
∑p

i=1(AiX0Bi + CiX
T
0 Di),

choose R∗
0 (for example R∗

0 = R0),

set P ∗
−1 = P−1 = 0, β−1 = 0,

for n = 0, 1, ..., until convergence, do:

Pn = Rn + βn−1Pn−1,

P ∗
n = R∗

n + βn−1P
∗
n−1,
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Sn =
∑p

i=1(AiPnBi + CiP
T
n Di),

S∗
n =

∑p
i=1(A

T
i P ∗

nBT
i + DiP

∗T
n Ci),

Tn =
∑p

i=1(AiRnBi + CiR
T
n Di),

αn =
〈R∗

n,Tn〉
〈S∗

n,Sn〉
,

Xn+1 = Xn + αnPn,

Rn+1 = Rn − αnSn,

R∗
n+1 = R∗

n − αnS∗
n,

Tn+1 =
∑p

i=1(AiRn+1Bi + CiR
T
n+1Di),

βn =
〈R∗

n+1
,Tn+1〉

〈R∗

n,Tn〉
.

6. The Matrix Form of CGS Algorithm

The CGS method is based on the Bi-CG method and not the original CG algorithm

for solving Ax = b. One major drawback of Bi-CG method is that it requires a multipli-

cation with the transpose of A. A number of hybrid Bi-CG methods such as CGS have

been presented to improve the convergence of Bi-CG and to avoid multiplication by AT .

The CGS method avoids using AT and accelerates the convergence by squaring the Bi-CG

polynomials [59]. The CGS algorithm can be summarized as follows [34].

Algorithm 19. (CGS Algorithm)

Choose x0 ∈ Rm;

Set p0 = u0 = r0 = b − Ax0, v0 = Ap0;

Choose r̃0 such that ρ0 = 〈r0, r̃0〉 6= 0 (for example r̃0 = r0);

For n = 1, 2, ... until (||rn−1||/||b||) ≤ ε, do:

Set σn−1 = 〈vn−1, r̃0〉, αn−1 = ρn−1/σn−1;

qn = un−1 − αn−1vn−1;

Set xn = xn−1 + αn−1(un−1 + qn);

rn = rn−1 − αn−1A(un−1 + qn);

Set ρn = 〈rn, r̃0〉, βn = ρn/ρn−1;

un = rn + βnqn;

pn = un + βn(qn + βnpn−1); vn = Mpn.

In the above algorithm, the stopping tolerance ε is a small positive number. In exact

arithmetic, Algorithm 19 terminates after a finite number, say n∗, of iterations. In [38],

Algorithm 19 was generalized to solve the general coupled matrix equations

p∑

j=1

AijXjBij = Ci, i = 1, 2, ..., p, (61)

where Aij , Xj, Bij ∈ R
m×m for i, j = 1, 2, ..., p.

By means of Kronecker product and vectorization operator, the general coupled matrix
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equations (61) can be transformed into the following linear systems:




BT
11 ⊗ A11 BT

12 ⊗ A12 . . . BT
1p ⊗ A1p

BT
21 ⊗ A21 BT

22 ⊗ A22 . . . BT
2p ⊗ A2p

...
...

...
...

BT
p1 ⊗ Ap1 BT

p2 ⊗ Ap2 . . . BT
pp ⊗ App




︸ ︷︷ ︸
A




vec(X1)
vec(X2)

...

vec(Xp)




︸ ︷︷ ︸
x

=




vec(C1)
vec(C2)

...

vec(Cp)


 .

︸ ︷︷ ︸
b

(62)

The dimension of the associate matrix A is high when m is large. In order to overcome this

problem, we obtain the matrix form of Algorithm 19 for solving (62). Applying Algorithm

19 for (62) gives us:

p0 = u0 = r0 = b − Ax0

= b −




BT
11 ⊗ A11 BT

12 ⊗ A12 . . . BT
1p ⊗ A1p

BT
21 ⊗ A21 BT

22 ⊗ A22 . . . BT
2p ⊗ A2p

...
...

...
...

BT
p1 ⊗ Ap1 BT

p2 ⊗ Ap2 . . . BT
pp ⊗ App


x0, (63)

v0 = Ap0 =




BT
11 ⊗ A11 BT

12 ⊗ A12 . . . BT
1p ⊗ A1p

BT
21 ⊗ A21 BT

22 ⊗ A22 . . . BT
2p ⊗ A2p

...
...

...
...

BT
p1 ⊗ Ap1 BT

p2 ⊗ Ap2 . . . BT
pp ⊗ App


 p0, (64)

rn = rn−1 − αn−1A(un−1 + qn) = rn−1 − αn−1

×




BT
11 ⊗ A11 BT

12 ⊗ A12 . . . BT
1p ⊗ A1p

BT
21 ⊗ A21 BT

22 ⊗ A22 . . . BT
2p ⊗ A2p

...
...

...
...

BT
p1 ⊗ Ap1 BT

p2 ⊗ Ap2 . . . BT
pp ⊗ App


 (un−1 + qn). (65)

Noting that (63)-(65), the following vectors are defined

b =




vec(C1)
vec(C2)

...

vec(Cp)


 , xn =




vec(X1,n)
vec(X2,n)

...

vec(Xp,n)


 , un =




vec(U1,n)
vec(U2,n)

...

vec(Up,n)


 , (66)

vn =




vec(V1,n)

vec(V2,n)
...

vec(Vp,n)


 , pn =




vec(P1,n)

vec(P2,n)
...

vec(Pp,n)


 , qn =




vec(Q1,n)

vec(Q2,n)
...

vec(Qp,n)


 , (67)

rn =




vec(R1,n)

vec(R2,n)
...

vec(Rp,n)


 , and r̃0 =




vec(R̃1,0)

vec(R̃2,0)
...

vec(R̃p,0)


 , (68)
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where Ci, Xi,n, Pi,n, Qi,n, Ui,n, Vi,n, Ri,n, R̃i,0 ∈ R
m×m for i = 1, 2, .., p and n =

0, 1, 2, ... . Substituting (66)-(68) into (63)-(65) gives us




vec(P1,0)

vec(P2,0)
...

vec(Pp,0)


 =




vec(U1,0)

vec(U2,0)
...

vec(Up,0)


 =




vec(R1,0)

vec(R2,0)
...

vec(Rp,0)


 =




vec(C1 −
∑p

j=1 A1jXj,0B1j)

vec(C2 −
∑p

j=1 A2jXj,0B2j)
...

vec(Cp −
∑p

j=1 ApjXj,0Bpj)


 ,

(69)


vec(V1,n)

vec(V2,n)
...

vec(Vp,n)


 =




vec(
∑p

j=1 A1jPj,nB1j)

vec(
∑p

j=1 A2jPj,nB2j)
...

vec(
∑p

j=1 ApjPj,nBpj)


 , (70)




vec(R1,n)
vec(R2,n)

...

vec(Rp,n)


 =




vec(R1,n−1)
vec(R2,n−1)

...

vec(Rp,n−1)


− αn−1




vec(
∑p

j=1 A1j(Uj,n−1 + Qj,n)B1j)

vec(
∑p

j=1 A2j(Uj,n−1 + Qj,n)B2j)
...

vec(
∑p

j=1 Apj(Uj,n−1 + Qj,n)Bpj)


 .

(71)

Also by using (66) and (68), the parameters σn−1 and ρn can be written as

σn−1 =〈vn−1, r̃0〉 =
〈



vec(V1,n−1)
vec(V2,n−1)

...

vec(Vp,n−1)


 ,




vec(R̃1,0)

vec(R̃2,0)
...

vec(R̃p,0)



〉

=

p∑

i=1

〈
vec(Vi,n−1), vec(R̃i,0)

〉
=

p∑

i=1

〈
Vi,n−1, R̃i,0

〉
,

and

ρn = 〈rn, r̃0〉 =
〈



vec(R1,n)

vec(R2,n)
...

vec(Rp,n)


 ,




vec(R̃1,0)

vec(R̃2,0)
...

vec(R̃p,0)



〉

=

p∑

i=1

〈
Ri,n, R̃i,0

〉
.

From the above discussion, the following matrix algorithm can be constructed for solving

the general coupled matrix equations (61).

Algorithm 20. (Matrix form of CGS Algorithm for (61))

Choose the initial matrices Xi,0 ∈ R
m×m, for i = 1, 2, ..., p;

Set Pi,0 = Ui,0 = Ri,0 = Ci −
∑p

j=1 AijXj,0Bij , Vi,0 =
∑p

j=1 AijPj,0Bij , for i =
1, 2, ..., p;

Choose R̃i,0 such that ρ0 =
∑p

i=1〈Ri,0, R̃i,0〉 6= 0, for i = 1, 2, ..., p (for example R̃i,0 =
Ri,0 for i = 1, 2, ..., p);

For n = 1, 2, ... until
√∑p

i=1 ||Ri,n−1||2 ≤ ε, do:

Set σn−1 =
∑p

i=1〈Vi,n−1, R̃i,0〉, αn−1 = ρn−1/σn−1;
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Qi,n = Ui,n − αn−1Vi,n, for i = 1, 2, ..., p;

Set Xi,n = Xi,n−1 + αn−1(Ui,n−1 + Qi,n), for i = 1, 2, ..., p;

Ri,n = Ri,n−1 − αn−1
∑p

j=1 Aij(Uj,n−1 + Qj,n)Bij , for i = 1, 2, ..., p;

Set ρn =
∑p

i=1

〈
Ri,n, R̃i,0

〉
, βn = ρn/ρn−1;

Ui,n = Ri,n + βnQi,n, for i = 1, 2, ..., p;

Pi,n = Ui,n + βn(Qi,n + βnQi,n−1);

Vi,n =
∑p

j=1 AijPj,nBij , for i = 1, 2, ..., p.

From Algorithm 20 is the matrix form of the original CGS algorithm, therefore in gen-

eral Algorithm 20 has the same properties as Algorithm 19. For example, in exact arith-

metic, Algorithm 20 terminates after a finite number of iterations.

7. The Matrix Form of Bi-CGSTAB Algorithm

One major drawback of Bi-CG algorithm is that it requires a multiplication with the

matrix AT . In many areas, the transpose matrix is not readily available or the multiplication

is difficult to perform. To avoid calculating the matrix AT and to improve the convergence

rate in Bi-CG, many efforts have been devoted to investigating more efficient methods from

restructuring Bi-CG algorithm [69]. In [60], van der Vorst introduced one of the most suc-

cessful improvement of Bi-CG, known as Bi-CGSTAB. In Bi-CGSTAB, the accelerating

polynomial is defined by using two-term recurrence relations to design the residual polyno-

mial of Bi-CGSTAB. The Bi-CGSTAB is characterized by residuals as:

rn = τn(A)φn(A)r0 = (I − ω1A)(I − ω2A)...(I − ωnA)φn(A)r0,

where r0 = b − Ax0, φn ∈ Pn, φn(0) = 1, and the ωi’s are chosen to locally minimize

the residual by a steepest descent method, for more details see [29, 60]. By computing

the above residual, a more smoothly converging algorithm is obtained. The Bi-CGSTAB

algorithm can be summarized in as follows.

Algorithm 21. (The Bi-CGSTAB algorithm)

Choose x0 and compute r0 = b − Ax0;

Pick an arbitrary vector r̃0 (for example r̃0 = r0);

Set v0 = p0 = 0; ρ0 = α1 = ω0 = 1;

For n = 1, 2, ..., until convergence

ρn = 〈rn−1, r̃0〉; βn = ( ρn

ρn−1
)( αn

ωn−1
);

pn = rn−1 + βn(pn−1 − ωn−1vn−1);

vn = Apn;

σn = 〈vn, r̃0〉; αn = ρn

σn
;

sn = rn−1 − αnvn; tn = Asn;

ωn = 〈sn,tn〉
〈tn,tn〉

;
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rn = sn − ωntn;

xn = xn−1 + αnpn + ωnsn.

As explained in [60], in exact arithmetic, the Bi-CGSTAB algorithm terminates with

true solution after n ≤ m steps. In [40], the Bi-CGSTAB algorithm was developed for

solving the coupled Sylvester matrix equations

{ ∑k
i=1(AiXBi + CiY Di) = M,∑k
i=1(EiXFi + GiY Hi) = N,

(72)

where Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi, M, N, X, Y ∈ R
m×m. By means Kronecker product

and vectorization operator, we can transform the coupled Sylvester matrix equations (72)

into the linear systems of equations Ax = b with the following parameters:

A =

(∑k
i=1 BT

i ⊗ Ai
∑k

i=1 DT
i ⊗ Ci∑k

i=1 FT
i ⊗ Ei

∑k
i=1 HT

i ⊗ Gi

)
∈ R

2m2×2m2

, x =

(
vec(X)

vec(Y )

)
∈ R

2m2

,

b =

(
vec(M)

vec(N )

)
∈ R

2m2

.

(73)

Obviously the dimension of the above associate matrix A is high when m. In order to

overcome this problem, the Bi-CGSTAB algorithm is directly developed for solving the

coupled Sylvester matrix equations (72). By applying the Bi-CGSTAB algorithm for Ax =

b with parameters (73), we can write

r0 = b − Ax0 =

(
vec(M)

vec(N )

)
−

(∑k
i=1 BT

i ⊗ Ai
∑k

i=1 DT
i ⊗ Ci∑k

i=1 FT
i ⊗ Ei

∑k
i=1 HT

i ⊗ Gi

)
x0, (74)

vn = Apn =

(∑k
i=1 BT

i ⊗ Ai
∑k

i=1 DT
i ⊗ Ci∑k

i=1 FT
i ⊗ Ei

∑k
i=1 HT

i ⊗ Gi

)
pn, (75)

tn = Asn =

(∑k
i=1 BT

i ⊗ Ai
∑k

i=1 DT
i ⊗ Ci∑k

i=1 FT
i ⊗ Ei

∑k
i=1 HT

i ⊗ Gi

)
sn. (76)

By considering the above equations, we define

xn =

(
vec(Xn)
vec(Yn)

)
, pn =

(
vec(P1,n)
vec(P2,n)

)
sn =

(
vec(S1,n)
vec(S2,n)

)
, (77)

r̃0 =

(
vec(R̃1,0)

vec(R̃2,0)

)
, rn =

(
vec(R1,n)
vec(R2,n)

)
, tn =

(
vec(T1,n)
vec(T2,n)

)
and vn =

(
vec(V1,n)
vec(V2,n)

)
,

(78)

where Xn, Yn, Pi,n, Si,n, Ti,n, Pi,n, Ri,n, R̃i,0 ∈ R
m×m for i = 1, 2 and n = 0, 1, 2, .... By

using these definitions, the scalars ρn, σn and ωn can be written as

ρn = 〈rn−1, r̃0〉 =
〈(

vec(R1,n−1)
vec(R2,n−1)

)
,

(
vec(R̃1,0)

vec(R̃2,0)

)〉
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=
〈

vec(R1,n−1), vec(R̃1,0)
〉

+
〈

vec(R2,n−1), vec(R̃2,0)
〉

=
〈
R1,n−1, R̃1,0

〉
+
〈
R2,n−1, R̃2,0

〉
,

(79)

σn = 〈vn, r̃0〉 =
〈
V1,n, R̃1,0

〉
+
〈
V2,n, R̃2,0

〉
, (80)

ωn =
〈sn, tn〉

〈tn, tn〉
=

〈
S1,n, T1,n

〉
+
〈
S2,n, T2,n

〉

〈
T1,n, T1,n

〉
+
〈
T2,n, T2,n

〉 =

〈
S1,n, T1,n

〉
+
〈
S2,n, T2,n

〉

||T1,n||2 + ||T2,n||2
. (81)

From the discussion above, we obtain the matrix form of the Bi-CGSTAB algorithm for

solving the coupled Sylvester matrix equations (72).

Algorithm 22. (Matrix form of the Bi-CGSTAB algorithm for solving (72))

Choose initial matrices X0, Y0 ∈ R
m×m;

Compute R1,0 = M −
∑k

i=1(AiX0Bi + CiY0Di) and R2,0 = N −
∑k

i=1(EiX0Fi +

GiY0Hi);

Pick arbitrary matrices R̃1,0, R̃2,0 ∈ Rn×n (for example R̃1,0 = R1,0 and R̃2,0 = R2,0);

Set V1,0 = V2,0 = P1,0 = P2,0 = 0; ρ0 = α1 = ω0 = 1;

For n = 1, 2, ..., until convergence

ρn = 〈R1,n−1, R̃1,0〉+ 〈R2,n−1, R̃2,0〉; βn = ( ρn

ρn−1
)( αn

ωn−1
);

P1,n = R1,n−1 + βn(P1,n−1 − ωn−1V1,n−1);

P2,n = R2,n−1 + βn(P2,n−1 − ωn−1V2,n−1);

V1,n =
∑k

i=1(AiP1,nBi + CiP2,nDi);

V2,n =
∑k

i=1(EiP1,nFi + GiP2,nHi);

σn = 〈V1,n, R̃1,0〉 + 〈V2,n, R̃2,0〉; αn = ρn

σn
;

S1,n = R1,n−1 − αnV1,n; S2,n = R2,n−1 − αnV2,n;

T1,n =
∑k

i=1(AiS1,nBi + CiS2,nDi);

T2,n =
∑k

i=1(EiS1,nFi + GiS2,nHi);

ωn =
〈S1,n,T1,n〉+〈S2,n,T2,n〉

||T1,n||2+||T2,n||2
;

R1,n = S1,n − ωnT1,n; R2,n = S2,n − ωnT2,n;

Xn = Xn−1 + αnP1,n + ωnS1,n; Yn = Yn−1 + αnP2,n + ωnS2,n.

The stopping criteria on the matrix form of the Bi-CGSTAB algorithm can be used as

√√√√||M −

k∑

i=1

(AiXnBi + CiYnDi)||2 + ||N −

k∑

i=1

(EiXnFi + GiYnHi)||2 ≤ ε,
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or √
||Xn − Xn−1||2 + ||Yn − Yn−1||2 ≤ ε,

where ε > 0 is a small tolerance.

8. The Matrix Form of QMRCGSTAB Algorithm

The QMRCGSTAB algorithm is a biorthogonalisation method for solving nonsymmet-

ric linear systems Ax = b which improves the irregular behaviour of Bi-CGSTAB algo-

rithm. This method is based on the quasi-minimisation of the residual applying the standard

Givens rotations that lead to iterations with short term recurrences [4]. The pseudocode for

the QMRCGSTAB algorithm can be summarized as follows.

Algorithm 23. (QMRCGSTAB algorithm )

Choose the initial guess x0 ∈ Rn, r0 = b − Ax0,

choose r∗0 (for example r∗0 = r0),

p0 = v0 = u0 = 0, ρ0 = α0 = ω0 = 1; τ = ||r0||, θ0 = 0, η0 = 0,

for k = 1, 2, ... do

ρk = 〈r∗0, rk−1〉; βk = (ρkαk−1)/(ρk−1ωk−1),

pk = rk−1 + βk(pk−1 − ωk−1vk−1),

vk = Apk,

αk = ρk/〈r
∗
0, vk〉,

sk = rk−1 − αkvk,

θ̃k = ||sk||/τ ; c = 1/
√

1 + θ̃2
k; τ̃ = τ θ̃kc,

η̃k = c2αk; ũk = pk +
θ2
k−1

ηk−1

αk
uk−1,

x̃k = xk−1 + η̃kũk,

tk = Ask; ωk = 〈sk, tk〉/〈tk, tk〉,

rk = sk − ωktk; θk = ||rk||/τ̃; c = 1/
√

1 + θ̃2
k; τ = τ̃ θkc,

ηk = c2ωk; uk = sk +
eθ2
k eηk

ωk
ũk ,

xk = x̃k + ηkuk,

if xk is accurate enough, then quit,
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end.

In exact arithmetic, the QMRCGSTAB algorithm terminates after a finite number, say

k∗, of iterations (for more details about QMRCGSTAB algorithm see [4]). In [39], the

QMRCGSTAB algorithm was extended to find the solution of the general coupled matrix

equations

l∑

j=1

(Ai,1,jX1Bi,1,j + Ai,2,jX2Bi,2,j + ... + Ai,l,jXlBi,l,j) = Ci for i = 1, 2, .., l, (82)

where Ai,k,j, Bi,k,j, Xi ∈ Rn×n for i, j, k = 1, 2, .., l. Also the extended QMRCGSTAB

algorithm was proposed to solve the periodic coupled matrix equations

{
A1,tXtB1,t + C1,tXt+1D1,t + E1,tYtF1,t = G1,t,

A2,tXtB2,t + C2,tXt+1D2,t + E2,tYtF2,t = G2,t,
for t = 1, 2, .., φ, (83)

where the coefficient matrices Aj,t,Bj,t, Cj,t,Dj,t, Ej,t,Fj,t, Gj,t ∈ Rn×n and the solutions

Xt,Yt ∈ Rn×n are φ-periodic for j = 1, 2.

To solve (82) by the QMRCGSTAB algorithm, we need to transform (82) into linear

system Ax = b. By using the Kronecker product and vectorization operator, we can trans-

form (82) into the following system:



∑l
j=1(B

T
1,1,j ⊗ A1,1,j)

∑l
j=1(B

T
1,2,j ⊗ A1,2,j) · · ·

∑l
j=1(B

T
1,l,j ⊗ A1,l,j)∑l

j=1(B
T
2,1,j ⊗ A2,1,j)

∑l
j=1(B

T
2,2,j ⊗ A2,2,j) · · ·

∑l
j=1(B

T
2,l,j ⊗ A2,l,j)

...
...

...
...∑l

j=1(B
T
l,1,j ⊗ Al,1,j)

∑l
j=1(B

T
l,2,j ⊗ Al,2,j) · · ·

∑l
j=1(B

T
l,l,j ⊗ Al,l,j)




︸ ︷︷ ︸
A

×




vec(X1)

vec(X2)
...

vec(Xl)




︸ ︷︷ ︸
x

=




vec(C1)

vec(C2)
...

vec(Cl)




︸ ︷︷ ︸
b

,

(84)

where A ∈ Rn2l×n2l and x, b ∈ Rn2l. Obviously the dimension of the associate matrix A

is high when n or l is large. Iterative methods like the QMRCGSTAB algorithm take much

computer time and memory for solving the large systems (84). Also the solutions obtained

by iterative methods are not accurate enough. To overcome these complications, we directly

extend the QMRCGSTAB algorithm for solving (82). For this purpose, we substitute the

parameters of linear systems (84) into the QMRCGSTAB algorithm. We have

r0 = b − Ax0 →

r0 =

0
BBB@

vec(C1)
vec(C2)

.

.

.

vec(Cl)

1
CCCA −

0
BBBB@

Pl
j=1(BT

1,1,j ⊗ A1,1,j )
Pl

j=1(BT
1,2,j ⊗ A1,2,j ) · · ·

Pl
j=1(BT

1,l,j
⊗ A1,l,j )Pl

j=1
(BT

2,1,j ⊗ A2,1,j )
Pl

j=1
(BT

2,2,j ⊗ A2,2,j ) · · ·
Pl

j=1
(BT

2,l,j
⊗ A2,l,j )

.

.

.
.
.
.

.

.

.
.
.
.Pl

j=1(BT
l,1,j ⊗ Al,1,j )

Pl
j=1(B

T
l,2,j ⊗ Al,2,j ) · · ·

Pl
j=1(BT

l,l,j ⊗ Al,l,j )

1
CCCCA

x0,

(85)
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vk = Apk → vk =

0
BBBB@

Pl
j=1(BT

1,1,j ⊗ A1,1,j )
Pl

j=1(BT
1,2,j ⊗ A1,2,j ) · · ·

Pl
j=1(BT

1,l,j ⊗ A1,l,j )Pl
j=1(BT

2,1,j ⊗ A2,1,j )
Pl

j=1(BT
2,2,j ⊗ A2,2,j ) · · ·

Pl
j=1(BT

2,l,j
⊗ A2,l,j )

.

.

.
.
.
.

.

.

.
.
.
.Pl

j=1(B
T
l,1,j ⊗ Al,1,j )

Pl
j=1(BT

l,2,j ⊗ Al,2,j ) · · ·
Pl

j=1(BT
l,l,j ⊗ Al,l,j )

1
CCCCA

pk,

(86)
and

tk = Ask → tk =

0

B

B

B

B

@

Pl

j=1
(BT

1,1,j ⊗ A1,1,j )
Pl

j=1
(BT

1,2,j ⊗ A1,2,j) · · ·
Pl

j=1
(BT

1,l,j ⊗ A1,l,j)
Pl

j=1
(BT

2,1,j ⊗ A2,1,j )
Pl

j=1
(BT

2,2,j ⊗ A2,2,j) · · ·
Pl

j=1
(BT

2,l,j ⊗ A2,l,j)
..
.

..

.
..
.

..

.
Pl

j=1
(BT

l,1,j ⊗ Al,1,j)
Pl

j=1
(BT

l,2,j ⊗ Al,2,j) · · ·
Pl

j=1
(BT

l,l,j ⊗ Al,l,j)

1

C

C

C

C

A

sk.

(87)
Now from the above equations and the QMRCGSTAB algorithm, we define:

rk =




vec(R1(k))
vec(R2(k))

...

vec(Rl(k))


 , vk =




vec(V1(k))
vec(V2(k))

...

vec(Vl(k))


 , sk =




vec(S1(k))
vec(S2(k))

...

vec(Sl(k))


 , pk =




vec(P1(k))
vec(P2(k))

...

vec(Pl(k))


 ,

(88)

r∗k =




vec(R∗

1(k))
vec(R∗

2(k))
...

vec(R∗

l (k))


 , tk =




vec(T1(k))
vec(T2(k))

...

vec(Tl(k))


 , xk =




vec(X1(k))
vec(X2(k))

...

vec(Xl(k))


 , uk =




vec(U1(k))
vec(U2(k))

...

vec(Ul(k))


 ,

(89)

x̃k =




vec(X̃1(k))

vec(X̃2(k))
...

vec(X̃l(k))


 , ũk =




vec(Ũ1(k))

vec(Ũ2(k))
...

vec(Ũl(k))


 , (90)

where Ri(k), Vi(k), Si(k), Pi(k), R∗
i (k), Ti(k), Xi(k), Ui(k), X̃i(k), Ũi(k) ∈ Rn×n for

i = 1, 2, ..l and k = 0, 1, 2, .... By substituting the definitions in (86)-(87), we can get

0

B

B

B

@

vec(R1(0))
vec(R2(0))

..

.

vec(Rl(0))

1

C

C

C

A

=

0

B

B

B

B

@

vec(C1 −
Pl

j=1
(A1,1,jX1(0)B1,1,j + A1,2,jX2(0)B1,2,j + ... + A1,l,jXl(0)B1,l,j))

vec(C2 −
Pl

j=1
(A2,1,jX1(0)B2,1,j + A2,2,jX2(0)B2,2,j + ... + A2,l,jXl(0)B2,l,j))

.

.

.

vec(Cl −
Pl

j=1
(Al,1,jX1(0)Bl,1,j + Al,2,j X2(0)Bl,2,j + ... + Al,l,jXl(0)Bl,l,j))

1

C

C

C

C

A

,

(91)

0

B

B

B

@

vec(V1(k))
vec(V2(k))

.

.

.

vec(Vl(k))

1

C

C

C

A

=

0

B

B

B

B

@

vec(
Pl

j=1
(A1,1,jP1(k)B1,1,j + A1,2,j P2(k)B1,2,j + ... + A1,l,jPl(k)B1,l,j))

vec(
Pl

j=1
(A2,1,jP1(k)B2,1,j + A2,2,j P2(k)B2,2,j + ... + A2,l,jPl(k)B2,l,j))

.

..

vec(
Pl

j=1
(Al,1,jP1(k)Bl,1,j + Al,2,jP2(k)Bl,2,j + ... + Al,l,jPl(k)Bl,l,j ))

1

C

C

C

C

A

,

(92)
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and

0
BBB@

vec(T1(k))
vec(T2(k))

.

.

.

vec(Tl(k))

1
CCCA =

0
BBBB@

vec(
Pl

j=1(A1,1,j S1(k)B1,1,j + A1,2,j S2(k)B1,2,j + ... + A1,l,j Sl(k)B1,l,j ))

vec(
Pl

j=1(A2,1,j S1(k)B2,1,j + A2,2,j S2(k)B2,2,j + ... + A2,l,j Sl(k)B2,l,j ))

.

.

.

vec(
Pl

j=1
(Al,1,jS1(k)Bl,1,j + Al,2,j S2(k)Bl,2,j + ... + Al,l,jSl(k)Bl,l,j))

1
CCCCA

. (93)

Also we have

ρk = 〈r∗0, rk−1〉 =
〈



vec(R∗
1(0))

vec(R∗
2(0))

...

vec(R∗
l (0))


 ,




vec(R1(k − 1))

vec(R2(k − 1))
...

vec(Rl(k − 1))



〉

=
l∑

i=1

〈R∗
i (0), Ri(k − 1)〉,

(94)

αk = ρk/〈r
∗
0, vk〉 = ρk/

l∑

i=1

〈R∗
i (0), Vi(k)〉, (95)

and

ωk = 〈sk, tk〉/〈tk, tk〉 =

l∑

i=1

〈Si(k), Ti(k)〉/

l∑

i=1

〈Ti(k), Ti(k)〉. (96)

From the discussion above, the matrix form of QMRCGSTAB algorithm for solving (82)

can be given as follows.

Algorithm 24. (The matrix form of QMRCGSTAB algorithm to solve (82))

Choose the initial guesses Xi(0) ∈ R
n×n for i = 1, 2, .., l,

Ri(0) = Ci −
∑l

j=1(Ai,1,jX1(0)Bi,1,j +Ai,2,jX2(0)Bi,2,j + ...+Ai,l,jXl(0)Bi,l,j), for

i = 1, 2, .., l

choose R∗
i (0) (for example R∗

i (0) = Ri(0)), for i = 1, 2, .., l

Pi(0) = Vi(0) = Ui(0) = 0, for i = 1, 2, .., l ρ0 = α0 = ω0 = 1; τ =
(
∑l

i=1 ||Ri(0)||2)1/2, θ0 = 0, η0 = 0,

for k = 1, 2, ... do

ρk =
∑l

i=1〈R
∗
i (0), Ri(k − 1)〉; βk = (ρkαk−1)/(ρk−1ωk−1),

Pi(k) = Ri(k − 1) + βk(Pi(k − 1) − ωk−1Vi(k − 1)), for i = 1, 2, .., l,

Vi(k) =
∑l

j=1(Ai,1,jP1(k)Bi,1,j + Ai,2,jP2(k)Bi,2,j + ... + Ai,l,jPl(k)Bi,l,j), for

i = 1, 2, .., l,

αk = ρk/
∑l

i=1〈R
∗
i (0), Vi(k)〉,

Si(k) = Ri(k − 1)− αkVi(k), for i = 1, 2, .., l,

θ̃k = (
∑l

i=1 ||Si(k)||2)1/2/τ ; c = 1/
√

1 + θ̃2
k; τ̃ = τ θ̃kc,

η̃k = c2αk; Ũi(k) = Pi(k) +
θ2
k−1

ηk−1

αk
Ui(k − 1), for i = 1, 2, .., l,
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X̃i(k) = Xi(k − 1) + η̃kŨi(k),

Ti(k) =
∑l

j=1(Ai,1,jS1(k)Bi,1,j + Ai,2,jS2(k)Bi,2,j + ... + Ai,l,jSl(k)Bi,l,j), for

i = 1, 2, .., l,

ωk =
∑l

i=1〈Si(k), Ti(k)〉/
∑l

i=1〈Ti(k), Ti(k)〉,

Ri(k) = Si(k) − ωkTi(k), for i = 1, 2, .., l, θk = (
∑l

i=1 ||Ri(k)||2)1/2/τ̃ ; c =

1/
√

1 + θ̃2
k , τ = τ̃ θkc,

ηk = c2ωk; Ui(k) = Si(k) +
eθ2
k eηk

ωk
Ũi(k), for i = 1, 2, .., l,

Xi(k) = X̃i(k) + ηkUi(k), for i = 1, 2, .., l,

if Xi(k) are accurate enough for i = 1, 2, .., l, then quit,

end.

The stopping criteria on Algorithm 24 can be used as

√√√√
l∑

i=1

||Ci −
l∑

j=1

(Ai,1,jX1(k)Bi,1,j + Ai,2,jX2(k)Bi,2,j + ... + Ai,l,jXl(k)Bi,l,j)||2 ≤ ε,

or √√√√
l∑

i=1

||Xi(k) − Xi(k − 1)||2 ≤ ε,

where ε > 0 is a small tolerance.

We can easily show that the periodic coupled matrix equations (83) are equivalent to

the following generalized coupled Sylvester matrix equations

{
A1XB1 + C1XD1 + E1Y F1 = G1,

A2XB2 + C2XD2 + E2Y F2 = G2,
(97)

where

Aj =

0
BBB@

0 · · · 0 Aj,1

Aj,2 0

. . .
.
.
.

0 Aj,φ 0

1
CCCA , Bj =

0
BBB@

0 Bj,2 0
.
.
.

. . .

0 Bj,φ

Bj,1 0 · · · 0

1
CCCA , Cj = diag

`
Cj,1,Cj,2, ...,Cj,φ

´
,

Dj = diag
`

Dj,1,Dj,2, ...,Dj,φ

´

, Ej = diag
`

Ej,1, Ej,2, ...,Ej,φ

´

, Fj = diag
`

Fj,1,Fj,2, ...,Fj,φ

´

,

Gj = diag
`

Gj,1,Gj,2, ...,Gj,φ

´

, X = diag
`

X2,X3, ...,Xφ,X1

´

, Y = diag
`

Y1,Y2, ...,Yφ

´

,

for j = 1, 2. It is obvious that the size of the matrix equations (97) is large. By consid-

ering (83), (97) and Algorithm 24, we extend the QMRCGSTAB algorithm for solving the

periodic coupled matrix equations (83) as follows.
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Algorithm 25. (The matrix form of QMRCGSTAB algorithm to solve (83))

Choose the initial guesses Xt(0) ∈ Rn×n and Yt(0) ∈ Rn×n for t = 1, 2, .., φ,

set Xφ+1(0) = X1(0), and Yφ+1(0) = Y1(0),

Rj,t(0) = Gj,t −Aj,tXt(0)Bj,t − Cj,tXt+1(0)Dj,t − Ej,tYt(0)Fj,t, for t = 1, 2, .., φ and

j = 1, 2,

choose R∗
1,t(0) and R∗

2,t(0) (for example R∗
1,t(0) = R1,t(0) and R∗

2,t(0) = R2,t(0)), for

t = 1, 2, .., φ,

Pj,t(0) = Vj,t(0) = Uj,t(0) = 0, for t = 1, 2, .., φ and j = 1, 2,

ρ0 = α0 = ω0 = 1; τ = (
∑φ

t=1[||R1,t(0)||2 + ||R2,t(0)||2])1/2, θ0 = 0, η0 = 0,

for k = 1, 2, ... do

ρk =
∑φ

t=1[〈R
∗
1,t(0), R1,t(k−1)〉+〈R∗

2,t(0), R2,t(k−1)〉], βk = (ρkαk−1)/(ρk−1ωk−1),

Pj,t(k) = Rj,t(k−1)+βk(Pj,t(k−1)−ωk−1Vj,t(k−1)), for t = 1, 2, .., φ and j = 1, 2,

set P1,φ+1(k) = P1,1(k) and P2,φ+1(k) = P2,1(k),

Vj,t(k) = Aj,tP1,t(k)Bj,t +Cj,tP1,t+1(k)(k)Dj,t +Ej,tP2,t(k)Fj,t, for t = 1, 2, .., φ and

j = 1, 2,

αk = ρk/
∑φ

t=1[〈R
∗
1,t(0), V1,t(k)〉+ 〈R∗

2,t(0), V2,t(k)〉],

Sj,t(k) = Rj,t(k − 1) − αkVj,t(k), for t = 1, 2, .., φ and j = 1, 2,

set S1,φ+1(k) = S1,1(k) and S2,φ+1(k) = S2,1(k),

θ̃k = (
∑φ

t=1[||S1,t(k)||2 + ||S2,t(k)||2])1/2/τ ; c = 1/
√

1 + θ̃2
k , τ̃ = τ θ̃kc,

η̃k = c2αk, Ũj,t(k) = Pj,t(k) +
θ2
k−1

ηk−1

αk
Uj,t(k − 1), for t = 1, 2, .., φ and j = 1, 2,

X̃t(k) = Xt(k − 1) + η̃kŨ1,t(k), for t = 1, 2, .., φ,

Ỹt(k) = Yt(k − 1) + η̃kŨ2,t(k), for t = 1, 2, .., φ,

Tj,t(k) = Aj,tS1,t(k)Bj,t + Cj,tS1,t+1(k)(k)Dj,t + Ej,tS2,t(k)Fj,t, for t = 1, 2, .., φ and

j = 1, 2,

ωk =
∑φ

t=1[〈S1,t(k), T1,t(k)〉 + 〈S2,t(k), T2,t(k)〉]/
∑φ

t=1[〈T1,t(k), T1,t(k)〉 +
〈T2,t(k), T2,t(k)〉],

Rj,t(k) = Sj,t(k) − ωkTj,t(k), for t = 1, 2, .., φ and j = 1, 2,

θk = (
∑φ

t=1[||R1,t(k)||2 + ||R2,t(k)||2])1/2/τ̃ , c = 1/
√

1 + θ̃2
k , τ = τ̃ θkc,

ηk = c2ωk, Uj,t(k) = Sj,t(k) +
eθ2
k

eηk

ωk
Ũj,t(k), for t = 1, 2, .., φ and j = 1, 2,
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Xt(k) = X̃t(k) + ηkU1,t(k), for t = 1, 2, .., φ,

Yt(k) = Ỹt(k) + ηkU2,t(k), for t = 1, 2, .., φ,

set Xφ+1(k) = X1(k) and Yφ+1(k) = Y1(k),

if Xt(k) and Yt(k) are accurate enough for t = 1, 2, .., φ, then quit,

end.

We can the stopping criteria on Algorithm 25 as follows
√√√√

2∑

j=1

φ∑

t=1

||Gj,t −Aj,tXt(k)Bj,t − Cj,tXt+1(k)Dj,t − Ej,tYt(k)Fj,t||2 ≤ ε,

where ε > 0 is a small tolerance.

9. Numerical Results

In this section, some numerical examples are proposed for the validation of the proposed

methods. We performed our computations using Matlab software on a Pentium IV.

Example 1. Consider a system of matrix equations in the form of
{

AX1B + CX2D = M,

EX1F + GX2H = N,

with the following parameters

A =

0

B

B

B

B

@

1 1 2 −3 4
3 4 2 2 1
0 4 7 2 4
−1 −1 −1 2 4
4 4 3 2 1

1

C

C

C

C

A

, B =

0

B

B

B

B

@

2 2 3 1 1
0 5 4 −2 −2
2 3 4 1 1
2 0 2 0 1
−3 −3 1 2 2

1

C

C

C

C

A

, C =

0

B

B

B

B

@

4 3 4 4 1
−2 −2 3 4 4
5 6 5 0 1
5 4 5 3 3
1 2 0 0 1

1

C

C

C

C

A

,

D =

0

B

B

B

B

@

−2 −1 −2 3 2
6 5 4 4 3
2 3 2 1 1
1 1 2 4 1
0 0 2 3 2

1

C

C

C

C

A

, E =

0

B

B

B

B

@

1 2 3 1 2
0 1 2 3 1
4 4 2 1 3
1 0 0 −1 0
2 4 5 3 2

1

C

C

C

C

A

, F =

0

B

B

B

B

@

1 2 3 −1 −1
3 0 0 3 3
1 2 3 0 −2
−1 −1 2 2 3
5 4 5 4 4

1

C

C

C

C

A

,

G =




1 2 1 2 1

3 3 3 1 2
1 2 3 −4 −4
5 5 5 4 4

2 −2 −2 −2 1




, H =




2 4 3 2 1

0 −3 −3 −3 2
1 1 1 0 0
1 1 2 3 4

2 3 4 5 2




.

It can be verified that these matrix equations are consistent over generalized bisymmetric

matrix pair (X1, X2) and have a unique generalized bisymmetric solution pair (X∗
1 , X∗

2)
as follows

X∗
1 =




2 2 0 4 2

2 −2 0 4 2
0 0 2 0 0

4 4 0 0 2
2 2 0 2 2




∈ BSR
5×5
P,P , X∗

2 =




2 0 0 4 0

0 −2 4 0 2
0 4 2 0 2

4 0 0 0 0
0 2 2 0 2




∈ BSR
5×5
Q,Q,
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with

P =




1 0 0 0 0
0 1 0 0 0

0 0 −1 0 0
0 0 0 1 0

0 0 0 0 1




∈ SOR
5×5, Q =




1 0 0 0 0
0 −1 0 0 0

0 0 −1 0 0
0 0 0 1 0

0 0 0 0 −1




∈ SOR
5×5.

By applying Algorithm 3 with the initial matrix pair (X1(1), X2(1)) = 0, we obtain

X1(33) =




2.0000 2.0000 −0.0000 4.0000 2.0000

2.0000 −2.0000 0.0000 4.0000 2.0000
0.0000 −0.0000 2.0000 −0.0000 −0.0000

4.0000 4.0000 0.0000 0.0000 2.0000
2.0000 2.0000 0.0000 2.0000 2.0000




,

X2(33) =




2.0000 −0.0000 0.0000 4.0000 −0.0000
0.0000 −2.0000 4.0000 0.0000 2.0000
0.0000 4.0000 2.0000 −0.0000 2.0000

4.0000 0.0000 −0.0000 −0.0000 0.0000
0.0000 2.0000 2.0000 0.0000 2.0000




,

with corresponding residual

||R(33)|| = 1.0497× 10−11.

The obtained results are presented in Figure 1, where

δ(k) = log10
||(X1(k), X2(k)) − (X∗

1 , X∗
2)||

||(X∗
1 , X∗

2 )||
and r(k) = log10 ||R(k)||.

From Figure 1, we can see that Algorithm 3 is effective.

Example 2. Consider the system of matrix equations

{
A1XD1 = C1,
A2XD2 = C2,

with the parameters

A1 = tril(rand(10, 10), 1), A2 = tril(rand(10, 10), 1)+ diag(80 + diag(rand(10))),

D1 = triu(rand(10, 10), 1), D2 = −tril(rand(10, 10), 1)+diag(70+diag(rand(10))),

C1 =




0 0.4752 1.5819 1.2979 0.3225 2.3894 2.0078 1.7323 0.8166 0.8911
0 0.2283 1.2500 0.7226 0.5247 1.9341 1.9930 1.6817 1.0292 1.1276
0 0.5633 2.4746 1.7033 1.2994 4.5379 4.4119 3.9496 2.5569 2.3597
0 0.4243 2.4563 1.2918 1.1377 5.6673 3.7479 5.0162 3.1931 3.2798
0 0.8805 2.4842 2.3836 0.9075 5.8859 4.5445 4.6132 3.1371 1.9735
0 0.8405 2.8620 2.3549 1.2453 7.1221 5.5886 6.7545 4.9200 3.5456
0 0.7069 3.9678 2.1694 1.9116 9.5221 6.9670 9.7375 7.0484 6.7634
0 0.5821 3.5256 1.8747 1.9998 8.3373 6.8889 9.3980 7.1389 6.6456
0 1.1014 4.1475 3.1459 1.8569 9.3099 7.8557 10.2282 7.6441 6.8865
0 0.8221 5.2980 2.6205 2.7589 12.4282 9.3805 14.3536 10.6867 11.6303




,
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Figure 1. The obtained results for Example 1.

C2 = 10
4

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1.0705 0.0016 −0.0000 0 0 0 0 0 0 0

0.0054 0.8956 0.0009 −0.0000 0 0 0 0 0 0

0.6863 0.0009 0.9202 0.0014 −0.0001 0 0 0 0 0

0.0061 0.8296 −0.0019 1.0586 −0.0021 −0.0000 0 0 0 0

1.0099 0.0089 0.1527 0.0009 0.9575 0.0057 −0.0000 0 0 0

0.0054 0.4600 −0.0088 0.4710 −0.0022 0.7984 0.0012 −0.0000 0 0

0.5210 0.0186 0.2178 0.0099 0.8071 0.0158 0.3886 0.0021 −0.0000 0

0.0131 1.0395 −0.0154 0.6018 0.0012 0.9916 0.0015 0.5023 0.0058 −0.0000

0.9314 0.0064 0.2987 0.0029 0.3508 0.0071 0.3802 −0.0064 0.9823 0.0018

−0.0039 1.0096 −0.0250 0.7476 −0.0117 0.6680 −0.0128 70.6905 −0.0092 1.0990

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

It can be verified that this system is consistent over the generalized centro-symmetric ma-
trices and has the generalized centro-symmetric solution X∗, that is

X∗ =

0
BBBBBBBBBBBBB@

1.9003 0 0 0 0 0 0 0 0 0
0 1.5839 0 0 0 0 0 0 0 0

1.2137 0 1.6263 0 0 0 0 0 0 0
0 1.4764 0 1.8636 0 0 0 0 0 0

1.7826 0 0.2778 0 1.6636 0 0 0 0 0
0 0.8114 0 0.8373 0 1.3958 0 0 0 0

0.9129 0 0.3974 0 1.4189 0 0.6839 0 0 0
0 1.8338 0 1.0503 0 1.7200 0 0.8898 0 0

1.6428 0 0.5444 0 0.6092 0 0.6824 0 1.7515 0
0 1.7873 0 1.3443 0 1.1871 0 1.2426 0 1.9767

1
CCCCCCCCCCCCCA

∈ SR
10×10

P,P
,
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P =

0

B

B

B

B

B

B

B

B

B

B

B

@

−1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

A

∈ SOR
10×10

.

For this problem, we apply Algorithm 7 to compute X(k) with the initial matrix X(1) = 0.

In Figure 2, we give the obtained results with several values of δ where

r(k) = log10(||C1−A1X(k)D1||+||C2−A2X(k)D2||), δ(k) = log10

||X(k)− X∗||

||X∗||
.

It can be observed from Figure 2 that Algorithm 7 is effective. The effect of changing the

convergence factor ω is illustrated in Figure 2. We see that the larger the convergence

factor ω is, the faster the convergence the algorithm.

Example 3. We consider the Sylvester matrix equation AX + XB = C with

A = B = M + 2rN +
100

(n + 1)2
I ∈ R

n×n,

where

M = tridiag(−1, 2,−1) ∈ R
n×n and N = tridiag(0.5, 0,−0.5) ∈ R

n×n.

Now we obtain the sequence of solution {X(i)} by Algorithms 11 and 12. The obtained

results are presented in Figures 3 and 4 where

ri = log10 ||C − AX(i)− X(i)B||, δi = log10(||X(i)− X∗||/||X∗||). (98)

The results show that Algorithms 11 and 12 are quite efficient.

Example 4. We study the periodic Sylvester matrix equation

X̃l + C̃lX̃l+1D̃l = Ẽl for l = 1, 2, (99)

where

C̃1 = tril(rand(n, n), n) + diag(1.75 + diag(rand(n))),

D̃1 = triu(rand(n, n), n)− diag(2− diag(rand(n))),

C̃2 = −tril(rand(n, n), n)− diag(3 + diag(rand(n))),

D̃2 = tril(rand(n, n), n)− diag(2 + diag(rand(n))),

and

Ẽ1 = Ẽ2 = rand(n, n).

When n = 30 we apply Algorithms 13 and 14 for computing the solutions of the the periodic

Sylvester matrix equation (99). The numerical results are depicted in Figure 5 where

r1,i = log10 ||Ẽ1−X̃1(i)−C̃1X̃2(i)D̃1|| and r2,i = log10 ||Ẽ2−X̃2(i)−C̃2X̃1(i)D̃2||.

From Figure 5, we can see that Algorithms 13 and 14 are effective.
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Figure 2. The obtained results for Example 2.
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Figure 3. The obtained results for Example 3 with Algorithm 11.

Example 5. As the final example, we consider the matrix equation

AXB = C,

where

A = −triu(rand(n, n), 1)+ diag(1.5 + diag(rand(n))),
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Figure 4. The obtained results for Example 3 with Algorithm 12.

B = tril(rand(n, n), 1)+ diag(1.25 + diag(rand(n))),

C = rand(n, n).

For n = 50 we apply Algorithms 17, 18, 20, 22 and 24 for computing the solutions of this
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Figure 5. The obtained results for Example 5 with Algorithms 13 and 14.

matrix equation. The numerical results are presented in Figure 6 where

r(k) = log10 ||C − AX(k)B||.

From Figure 6, we can see that Algorithms 17, 18, 20, 22 and 24 are efficient.

10. Conclusion

In summary, we have presented some of the latest developments in iterative algorithms

for solving various matrix equations. The presented iterative algorithms were obtained

by extending CGNE, LSQR, Bi-CG, Bi-CR, CGS, Bi-CGSTAB and QMRCGSTAB algo-

rithms. Numerical results have indicated the effectiveness of the iterative algorithms.
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Chapter 8

SIMULTANEOUS TRIANGULARIZATION OF A PAIR

OF MATRICES OVER A PRINCIPAL IDEAL DOMAIN

WITH QUADRATIC MINIMAL POLYNOMIALS

Volodymyr M. Prokip∗

Pidstryhach Institute for Applied Problems

of Mechanics and Mathematics, Lviv, Ukraine

Abstract

The problems of existence of common eigenvectors and simultaneous triangularization

of a pair of matrices over a principal ideal domain with quadratic minimal polynomials

are investigated. The necessary and sufficient conditions of simultaneous triangular-

ization of a pair of matrices with quadratic minimal polynomials are obtained. As

a result, the approach offered provides the necessary and sufficient conditions of si-

multaneous triangularization of pairs of idempotent matrices and pairs of involutory

matrices over a principal ideal domain.

Keywords: principal ideal domain; common eigenvector; simultaneous triangularization

AMS Subject Classification: 15A18, 15A21, 15A36

1. Introduction

Let R be a principal ideal domain with an identity element e 6= 0 and let Mm,n(R)

denote the set of m × n matrices over R. In what follows, In is the identity n × n matrix,

0m,k is the zero m × k matrix, and O is a zero matrix whose order is obvious from the

context. The symbol
[
A, B

]
is the standard notation for the commutator AB − BA of the

matrices A, B ∈ Mn,n(R).

∗E-mail address: v.prokip@gmail.com
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Matrices A, B ∈ Mn,n(R) are said to be simultaneously triangularizable if there exists

a matrix U ∈ GL(n, R), such that

UAU−1 =




α11 0 . . . . . . 0
α21 α22 0 . . . 0

. . . . . . . . . . . . . . .
αn1 αn,2 . . . αn,n−1 αnn




and

UBU−1 =




β11 0 . . . . . . 0

β21 β22 0 . . . 0
. . . . . . . . . . . . . . .

βn1 βn,2 . . . βn,n−1 βnn




are lower triangular matrices.

The question as to whether two complex matrices are simultaneously triangularizable

is an old problem of linear algebra and has a long-standing history. In principle, it is solved

by McCoy [1].

Theorem 1.1. Let A and B be given n × n complex matrices. Matrices A and B are

simultaneously triangularizable if and only if, for any polynomial p(x, y) in noncommuting

variables x and y, the matrix p(A, B)(AB − BA) is nilpotent.

The McCoy proof is complicated and contains no finite procedure for verifying the

condition of the theorem. The more elementary proof is presented in [2] (see also [8, 10]

and references therein).

Laffey [5] and Guralnick [6] have proved that if A and B are n × n matrices over any

algebraically closed field and if rank (AB−BA) = 1, then there exists an invertible matrix

S such that SAS−1 and SBS−1 are both triangular. Laffey also gives the examples of pairs

{A, B} with rank (AB − BA) > 1, where the conclusion does not hold. Several other

interesting results were discussed in [9, 12, 14].

Simultaneous similarity and triangularization of matrices over integer domains were

investigated in [15]. In this article a simple numerical criterion for the triangularization of

sets of 2 by 2 matrices is proposed.

In this paper the problems of existence of common eigenvectors and simultaneous tri-

angularization of a pair of matrices over a principal ideal domain with quadratic minimal

polynomials are investigated. The paper is organized as follows. In Section 2 we present

the necessary and sufficient conditions for diagonalizability of matrices of Mn,n(R) with

quadratic minimal polynomials. Using the results of the section 2, in Section 3 we indicate

the conditions of existence of a common eigenvector for matrices over R with quadratic

minimal polynomials. The necessary and sufficient conditions for the simultaneous trian-

gularizability of two matrices over a principal ideal domain are established in section 4.

2. Preliminaries

If the matrix A ∈ Mn,n(R) is similar to a diagonal matrix, then A is said to be diago-

nalizable. In other words, for A there exists a matrix U ∈ GL(n, R), such that

UAU−1 = diag (α1, α2, . . . , αn) ∈ Mn,n(R)
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is a diagonal matrix. From this equality it follows, that the matrix A ∈ Mn,n(R) is diago-

nalizable, then its characteristic polynomial a(λ) admits the representation in the form of a

product

a(λ) = det(Inλ − A) = (λ − α1)
k1(λ − α2)

k2 . . . (λ − αr)
kr ,

where αi ∈ R, i = 1, 2, . . . , r and αi 6= αj for i 6= j. It is obvious that A ∈ Mn,n(R) is a

diagonalizable matrix, then its minimal polynomial m(λ) has no multiple roots, i.e.,

m(λ) = (λ − α1)(λ − α2) . . .(λ − αr).

Let R = F be a field. Then the last condition is necessary and sufficient for the diagonal-

izability of the matrix A over a field F. It is easy to verify that this condition is not sufficient

for the diagonalization of matrices over a commutative ring with an identity element (and

over a principal ideal domain, in particular). Conditions under which a matrix with entries

in a commutative ring can be reduced to a diagonal form by a similarity transformation were

presented in [16, 17, 18]. In this section we present the necessary and sufficient conditions

for the diagonalizability of matrices of Mn,n(R) with quadratic minimal polynomials.

Let A ∈ Mn,n(R) be an idempotent matrix, that is A2 = A and 1 ≤ rank A < n. It is

obvious that m(λ) = λ(λ− e) is a minimal polynomial of the idempotent matrix A. It was

proved in [3] that an idempotent matrix A ∈ Mn,n(R) is diagonalized. In other words, for

the idempotent matrix A, there exists a matrix U ∈ GL(n, R) such that

UAU−1 =

[
Ik 0k,n−k

0n−k,k 0n−k,n−k

]
.

In what follows, we describe a structure of diagonalized matrices from Mn,n(R) with

minimal polynomial m(λ) = (λ − α)(λ − β), where α 6= β.

Lemma 2.1. Let A ∈ Mn,n(R) be a matrix with characteristic polynomial det(Inλ−A) =

(λ − α)k(λ − β)n−k , where 1 ≤ k < n, α, β ∈ R and α 6= β. Then A is diagonalizable if

and only if the two following conditions hold:

(a) m(λ) = (λ − α)(λ − β) is the minimal polynomial of the matrix A;

(b) (A − αIn) = 0n,n ( mod (β − α)).

Proof. Let the matrix A ∈ Mn,n(R) with characteristic polynomial

det(Inλ − A) = (λ − α)k(λ − β)n−k,

where α, β ∈ R, α 6= β and 1 ≤ k < n, be diagonalizable, i.e.,

UAU−1 =

[
Ikα O

O βIn−k

]
,

where U ∈ GL(n, R). It is obvious that m(λ) = (λ−α)(λ−β) is the minimal polynomial

of the matrix A. Then

A − αIn = U−1

[
O O

O (β − α)In−k

]
U =

U−1

[
O O

O In−k

]
U(β − α) = 0n,n ( mod (β − α)).
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Conversely, let A ∈ Mn,n(R) be a matrix with characteristic polynomial det(Inλ −
A) = (λ − α)k(λ − β)n−k , where α, β ∈ R, α 6= β, 1 ≤ k < n, and

(A − αIn) = 0n,n ( mod (β − α)). (2.1)

From equality (2.1) it follows

A − Inα = (β − α)P,

where P ∈ Mn,n(R). Using the fact that m(λ) = (λ−α)(λ−β) is the minimal polynomial

of the matrix A, we have

m(A) = (αIn − A)(βIn − A) = (β − α)2(P 2 − P ) = 0n,n.

From the last equality it follows, that P is an idempotent matrix. Thus, the matrix A admits

the representation in the form

A = Inα + (β − α)P,

where P is the diagonalizable matrix. It is obvious that the matrix A is similar to the

diagonal matrix

[
Ikα O

O βIn−k

]
. The Lemma is proved.

Corollary 2.1. Let A ∈ Mn,n(R) be a matrix with minimal polynomial m(λ) = (λ −

α)(λ−β), where α, β ∈ R and α 6= β. If (α−β) is a divisor of unity in R, then the matrix

A is diagonalizable.

Corollary 2.2. Let A ∈ Mn,n(R) be a diagonalizable matrix with minimal polynomial

m(λ) = (λ − α)(λ − β), where α, β ∈ R and α 6= β. Then for the matrix A there exists

the unique pair of idempotent matrices Pα, Pβ ∈ Mn,n(R) such that

(a) A = Inα + (β − α)Pβ;

(b) A = Inβ + (α − β)Pα;

(c) Pα + Pβ = In;

(d) A = αPα + βPβ.

Proof. Let A ∈ Mn,n(R) be a diagonalized matrix with minimal polynomial m(λ) =

(λ−α)(λ−β) and α 6= β. From the proof of Lemma 2.1 we have that the matrix A admits

a representation in the form

A = Inα + (β − α)Pβ , (2.2)

where Pβ ∈ Mn,n(R) is an idempotent matrix. It is obvious that In − Pβ = Pα is the

idempotent matrix. We rewrite the equality (2.2) as

A = Inα + (β − α)(In − Pβ) = Inβ + (α − β)Pα.

By the relation Pα + Pβ = In, from (2.2) it follows that

A = (Pα + Pβ)α + (β − α)Pβ = αPα + βPβ .
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For the matrix A we assume that, there exists another pair of idempotent matrices

Qα, Qβ ∈ Mn,n(R) that is different from the pair Pα, Pβ, for which the conditions

Qα + Qβ = In and A = αQα + βQβ hold. Hence,

A = Inα + (β − α)Pβ = Inα + (β − α)Qβ.

Since α 6= β, the last equality yields Pβ = Qβ . Analogously, we can show that Pα = Qα.

This completes the proof.

3. Common Eigenvectors of Matrices with Quadratic Minimal

Polynomials

It is said that the matrices A, B ∈ Mn,n(R) have a common left eigenvector, if there

exists a nonzero vector ū ∈ M1,n(R) such that ūA = ūα and ūB = ūβ, where α, β ∈ R.

Analogously, we introduce the notion of a common right eigenvector of the matrices A and

B. It is obvious that if the matrices A and B have the common left eigenvector, then A and

B have the common right eigenvector. Below, the term common eigenvector of the matrices

A and B means that A and B have a common left eigenvector. It follows from the above

consideration that the matrices A and B over the domain R can have a common eigenvector

only in the case, if their characteristic polynomials a(λ) and b(λ) admit a representation

in the forms a(λ) = (λ − α)c(λ) and b(λ) = (λ − β)d(λ) respectively. We note that if

R is a field, then the problem of the existence of a common eigenvector for the matrices

A and B over a field was solved in [7] (see also [11], [13]). In this section we indicate

the conditions of the existence of a common eigenvector for matrices over R with quadratic

minimal polynomials.

Let A and B be n×n matrices over a principal ideal domain R chosen randomly. Then,

with probability one, A and B do not have nontrivial common eigenvector. However, the

situation can change if the choice of A and B is somehow restricted. In this respect, the

following lemma, theorem and corollaries are of interest.

Lemma 3.1. The idempotent matrices A, B ∈ Mn,n(R) have a common eigenvector if and

only if the commutator
[
A, B

]
is a singular matrix.

Proof. Necessity. Let ū ∈ M1,n(R) be a common eigenvector of the matrices A, B ∈

Mn,n(R), that is

ūA = ūα and ūB = ūβ,

where α, β ∈ R. Then we have

ū
(
AB − BA

)
= ūαB − ūβA = ū

(
αβ − βα

)
= 0n,n.

Since ū ∈ M1,n(R) is a nonzero vector, then from the last equality we have that the com-

mutator
[
A, B

]
is a singular matrix. The necessity is proved.

Sufficiency. Let for the idempotent matrices A, B ∈ Mn,n(R) the commutator
[
A, B

]

be a singular matrix. If one of the matrices A or B is the identity or zero matrix, then it is

obvious that the matrices A and B have a common eigenvector.
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We assume that 1 ≤ rankA = k < n and 1 ≤ rankB < n. For the idempotent matrix

A there exists a matrix T ∈ GL(n, R) such that

TAT−1 = D =

[
Ik O

O O

]
and TBT−1 = C =

[
C11 C12

C21 C22

]
,

where C11 ∈ Mk(R), C12 ∈ Mk,n−k(R), C21 ∈ Mn−k,k(R), C22 ∈ Mn−k(R). It is

obvious that the matrices A and B have a common eigenvector if and only if the matrices

D and C have a common eigenvector.

Since B2 = B, we have C2 = C. The last equality yields

C11C11 + C12C21 = C11, (3.1)

C11C12 + C12C22 = C12, (3.2)

C21C11 + C22C21 = C21, (3.3)

C21C12 + C22C22 = C22. (3.4)

It is easily verified that rank
[
A, B

]
= rank

[
D, C

]
< n and

[D, C] =

[
O C12

−C21 O

]
.

Since rank
[
D, C

]
< n, we have that either rank C12 < k or rank C21 < n − k.

A) Let rank C12 < k. Then one of the following conditions is satisfied:

rank
[
C11 C12

]
< k or rank

[
C11 C12

]
= k.

If rank
[
C11 C12

]
< k, then there exists a nonzero vector ū ∈ M1,k(R) such that

ū
[
C11 C12

]
= 0̄ is the zero vector. Hence, the vector

[
ū 0 . . . 0

]
∈ M1,n(R) is the

common left eigenvector of the matrices D and C.

Let rank
[
C11 C12

]
= k. Since rank C12 < k, there exists a nonzero vector ū ∈

M1,k(R) such that ūC12 = 0̄ and ūC11 6= 0̄. From equality (3.1) we obtain

(ūC11)C11 = ūC11.

Similarly, from equality ( 3.2) it follows that

(ūC11)C12 = 0̄.

Hence, in this particular case the vector
[
ūC11 0 . . . 0

]
∈ M1,n(R) is the common

left eigenvector of the matrices D and C.

B) Let rank C21 < n − k. Then one of the following conditions is satisfied:

rank
[
C21 C22

]
< n − k or rank

[
C21 C22

]
= n − k.

Let rank
[
C21 C22

]
< n−k. For the matrix

[
C21 C22

]
there exists a nonzero vector

ū ∈ M1,n−k(R) such that

ū
[
C21 C22

]
= O.
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Hence, the vector
[
0 . . . 0 ū

]
∈ M1,n(R) is the common left eigenvector of the matri-

ces D and C.

Let rank
[
C21 C22

]
= n − k. Then there exists a nonzero vector ū ∈ M1,n−k(R)

such that

ūC21 = 0̄ and ūC22 6= O.

From equality (3.4 ) we obtain (ūC22) C22 = ūC22. Similarly, from equality (3.3) it follows

that (ūC22)C21 = 0̄.

Hence, the vector
[
0 . . . 0 ūC22

]
∈ M1,n(R) is the common left eigenvector of

the matrices D and C. The Lemma is proved.

Corollary 3.1. Let A, B ∈ Mn,n(R) be diagonalizable matrices with minimal polynomials

mA(λ) = (λ−α1)(λ−α2) and mB(λ) = (λ−β1)(λ−β2) respectively, where αi, βi ∈ R,

α1 6= α2 and β1 6= β2. The matrices A and B have a common eigenvector if and only if the

commutator
[
A, B

]
is a singular matrix.

Proof. By Corollary 2.1, for diagonalizable matrices A, B ∈ Mn,n(R) with minimal poly-

nomials mA(λ) = (λ − α1)(λ − α2) and mB(λ) = (λ − β1)(λ − β2) respectively, there

exist the idempotent matrices P, Q ∈ Mn,n(R) such that

A = Inα1 + (α2 − α1)P and B = Inβ1 + (β2 − β1)Q.

Hence, the matrices A and B have a common eigenvector if and only if the idempotent

matrices P and Q have a common eigenvector. Since (α2 −α1)(β2 − β1) 6= 0, it is easy to

see that

rank
[
A, B

]
= rank

[
P, Q

]
.

By Lemma 3.1, the matrices P and Q have a common eigenvector if and only if the com-

mutator
[
P, Q

]
is a singular matrix. This completes the proof.

Theorem 3.1. Let A, B ∈ Mn,n(R) be the matrices with minimal polynomials mA(λ) =
(λ−α1)(λ−α2) and mB(λ) = (λ−β1)(λ−β2) respectively, where αi, βi ∈ R, α1 6= α2

and β1 6= β2. The pair of matrices A, B ∈ Mn,n(R) have a common eigenvector over R if

and only if the commutator
[
A, B

]
is a singular matrix.

Proof. Necessity is evident.

Sufficiency. Let for the idempotent matrices A, B ∈ Mn,n(R) the commutator
[
A, B

]

be a singular matrix. Further, let F be a quotient field of the domain R, that is R ⊂ F. It

is clear, that mA(λ) and mB(λ) are minimal polynomials of the matrices A and B over F,

respectively. Thus, matrices A and B over F are diagonalizable. By Corollary 3.1 from

inequality rank
[
A, B

]
< n it follows that for the matrices A and B there exists a common

eigenvector u ∈ M1,n(F). Now we write the vector u in the form

u =
[ u1

v1

u2

v2

. . .
un

vn

]
,

where ui ∈ R and vi ∈ R\{0}, i = 1, 2, . . . , n. Put v =
n∏

i=1

vi. It is obvious that the vector

u0 = v · u ∈ M1,n(R) is the common eigenvector of the matrices A and B over R. The

proof of Theorem 3.1 is completed.
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Let A ∈ Mn,n(R) be an involutory matrix, that is A2 = In. If A 6= ±In, then

m(λ) = (λ − e)(λ + e) is the minimal polynomial of an involutory matrix A. The im-

potent application of Theorem 3.1 is presented in the following corollary.

Corollary 3.2. The involutory matrices A, B ∈ Mn,n(R) have a common eigenvector if

and only if the commutator
[
A, B

]
is a singular matrix.

Let v =
[

v1 v2 . . . vn

]
∈ M1,n(R) be a vector. If e = gcd (v1 , v2 , . . . , vn)

is the greatest common divisor of elements v1 , v2 , . . . , vn, then v is called an unimodular

vector.

Suppose that w =
[

w1 w2 . . . wn

]
∈ M1,n(R) is a common eigenvector of

matrices A, B ∈ Mn,n(R) and gcd (w1 , w2 , . . . , wn) = d 6= e. Then wi = dui,

where ui ∈ R for all i = 1, 2, . . . , n, and gcd (u1 , u2 , . . . , un) = e. Obviously, that

u =
[

u1 u2 . . . un

]
is an unimodular vector and w = d ·u. This means that the uni-

modular vector u is a common eigenvector of matrices A, B ∈ Mn,n(R) also. We record

this fact as a remark to Theorem 3.1.

Remark 1. Let a pair of matrices A, B ∈ Mn,n(R) have a common eigenvector over R.

Then for matrices A and B there exists an unimodular common eigenvector over R.

4. Simultaneous Triangularization of a Pair of Matrices

with Quadratic Minimal Polynomials

In this section, we present new, relatively simple necessary and sufficient conditions for

the simultaneous triangularization of a pair of matrices over a principal ideal domain with

quadratic minimal polynomials. Let F be an algebraically closed field. If matrices A and

B over a field F commute, then their simultaneous triangulability is a known fact in linear

algebra (see [8], Chapter 2). It is easy to prove the following propositions.

Proposition 4.1. Let A, B ∈ Mn,n(R) be matrices with characteristic polynomials

a(λ) = det(Inλ − A) = (λ − α1)
k1(λ − α2)

k2 . . . (λ − αr)
kr , αi ∈ R, i = 1, 2, . . . , r;

and

b(λ) = det(Inλ − B) = (λ − β1)
k1(λ − β2)

k2 . . . (λ − βr)
kl,, βj ∈ R, j = 1, 2, . . . , l,

respectively. If matrices A and B commute, then A and B are simultaneously triangulariz-

able.

Proposition 4.2. Let matrices A, B ∈ Mn,n(R) be simultaneously triangularizable. Then

the commutator
[
A, B

]
is a nilpotent matrix.

The following question is natural: for which classes of matrices A, B ∈ Mn,n(R) the

condition of Proposition 4.2 is sufficient as well. The following theorem and its corollaries

specify the classes of such pair of matrices.
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Theorem 4.1. Let A, B ∈ Mn,n(R) be the matrices with minimal polynomials mA(λ) =
(λ−α1)(λ−α2) and mB(λ) = (λ−β1)(λ−β2) respectively, where αi, βi ∈ R, α1 6= α2

and β1 6= β2. The pair of matrices A, B ∈ Mn,n(R) are simultaneously triangularizable if

and only if the commutator
[
A, B

]
is a nilpotent matrix.

Proof. The necessity follows from Proposition 4.2.

Sufficiency. Put ΛA = {α1, α2} and ΛB = {β1, β2}. Since [A, B] is a nilpotent matrix,

then by Theorem 3.1 and Remark 1, for the matrices A and B there exists an unimodular

common eigenvector u1 ∈ M1,n(R), that is

ū1A = ū1α11 and ū1B = ū1β11,

where α11 ∈ ΛA, β11 ∈ ΛB. For the vector u1 there exists a matrix U1 ∈ GL(n, R) with

first row u1 (see [4], Chapter II), that is U1 =

[
u1

∗

]
. For the matrix U1 the following

relations holds:

U1AU−1

1
=

[
α11 0 · · · 0

∗ A1

]
and U1BU−1

1
=

[
β11 0 · · · 0

∗ B1

]
,

where A, B ∈ Mn−1,n−1(R). From equality

U1

[
A, B

]
U−1

1
=

[
0 0 · · · 0

∗
[
A1, B1

]

]

it follows that
[
A1, B1

]
is a nilpotent matrix.

By Theorem 3.1 and Remark 1, for the matrices A1 and B1 there exists an unimodular

common eigenvector u2 ∈ M1,n−1(R), that is

ū2A1 = ū2α22 and ū2B1 = ū2β22,

where α22 ∈ ΛA, β22 ∈ ΛB. Similarly, for the vector u2 there exists a matrix

U2 =

[
u2

∗

]
∈ GL(n − 1, R) and for the matrix U2 the following relations holds:

U2A1U
−1

2
=

[
α22 0 · · · 0

∗ A2

]
and U2B1U

−1

2
=

[
β22 0 · · · 0

∗ B2

]
,

where α22 ∈ ΛA, β22 ∈ ΛB and A2, B2 ∈ Mn−2,n−2(R). It is clear that
[
A2, B2

]
is a

nilpotent matrix.

Put U21 = diag
(
e , U2

)
U1 ∈ GL(n, R). It is easy to see that

U21AU−1

21
=




α11 0 0 · · · 0

α21 α22 0 · · · 0

∗ ∗ A2




Complimentary Contributor Copy



296 Volodymyr M. Prokip

and

U21BU−1

21
=




β11 0 0 . . . 0

β21 β22 0 . . . 0

∗ ∗ B2


 .

Continuing these procedure further, after a finite number of steps we obtain that for the

matrices A and B there exists a matrix U ∈ GL(n, R) such that UAU−1 and UBU−1 are

lower triangular matrices. This completes the proof of Theorem 4.1.

The following results are immediate consequences of Theorem 4.1.

Corollary 4.1. The idempotent matrices A, B ∈ Mn,n(R) are simultaneously triangulari-

zable if and only if the commutator
[
A, B

]
is a nilpotent matrix.

Corollary 4.2. The involutory matrices A, B ∈ Mn,n(R) are simultaneously triangulari-

zable if and only if the commutator
[
A, B

]
is a nilpotent matrix.

Conclusion

We note that the obtained results are true for matrices over the domains of elementary

divisors. In addition, some of them can be extended for matrices over the ID-rings [3],

i.e., over the commutative rings with an identity element, over which an idempotent matrix

is diagonalized. It is noted that the simultaneous triangularization of the set of matrices

over commutative rings with an identity element (and over the principal ideal domain R, in

particular) is an open problem.
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Chapter 9

RELATION OF ROW-COLUMN DETERMINANTS

WITH QUASIDETERMINANTS OF MATRICES

OVER A QUATERNION ALGEBRA

Aleks Kleyn1,∗ and Ivan I. Kyrchei2,†

1American Mathematical Society, USA
2Pidstryhach Institute for Applied Problems

of Mechanics and Mathematics, Lviv, Ukraine

Abstract

Since product of quaternions is noncommutative, there is a problem how to determine a

determinant of a matrix with noncommutative elements (it’s called a noncommutative

determinant). We consider two approaches to define a noncommutative determinant.

Primarily, there are row – column determinants that are an extension of the classical

definition of the determinant; however we assume predetermined order of elements

in each of the terms of the determinant. In the chapter we extend the concept of an

immanant (permanent, determinant) to a split quaternion algebra using methods of the

theory of the row and column determinants.

Properties of the determinant of a Hermitian matrix are established. Based on

these properties, analogs of the classical adjont matrix over a quaternion skew field

have been obtained. As a result we have a solution of a system of linear equations

over a quaternion division algebra according to Cramer’s rule by using row–column

determinants.

Quasideterminants appeared from the analysis of the procedure of a matrix in-

version. By using quasideterminants, solving of a system of linear equations over a

quaternion division algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quaside-

terminants is that we have not one determinant of a quadratic matrix of order n with

noncommutative entries, but certain set (there are n2 quasideterminants, n row deter-

minants, and n column determinants). We have obtained a relation of row-column

determinants with quasideterminants of a matrix over a quaternion division algebra.

∗E-mail address: Aleks Kleyn@MailAPS.org
†E-mail address: kyrchei@online.ua
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1. Introduction

Linear algebra is a powerful tool that we use in different areas of mathematics, including

the calculus, the analytic and differential geometry, the theory of differential equations, and

the optimal control theory. Linear algebra has accumulated a rich set of different methods.

Since some methods have a common final result, this gives us the opportunity to choose the

most effective method, depending on the nature of calculations.

At transition from linear algebra over a field to linear algebra over a division ring,

we want to save as much as possible tools that we regularly use. Already in the early

XX century, shortly after Hamilton created a quaternion algebra, mathematicians began

to search the answer how looks like the algebra with noncommutative multiplication. In

particular, there is a problem how to determine a determinant of a matrix with elements

belonging to a noncommutative ring. Such determinant is also called a noncommutative

determinant.

There were a lot of approaches to the definition of the noncommutative determinant.

However none of the introduced noncommutative determinants maintained all those prop-

erties that determinant possessed for matrices over a field. Moreover, in paper [1], J. Fan

proved that there is no unique definition of determinant which would expands the definition

of determinant of real matrices for matrices over the division ring of quaternions. There-

fore, search for a solution of the problem to define a noncommutative determinant is still

going on.

In this chapter, we consider two approaches to define noncommutative determinant.

Namely, we explore row-column determinants and quasideterminant.

Row-column determinants are an extension of the classical definition of the determi-

nant, however we assume predetermined order of elements in each of the terms of the

determinant. Using row-column determinants, we obtain a solution of a system of linear

equations over a quaternion division algebra according to Cramer’s rule.

Quasideterminant appeared from the analysis of the procedure of a matrix inversion.

Using quasideterminant, solving of a system of linear equations over a quaternion division

algebra is similar to the Gauss elimination method.

There is common in definition of row and column determinants and quasideterminant.

In both cases, we have not one determinant in correspondence to quadratic matrix of or-

der n with noncommutative entries, but certain set (there are n2 quasideterminant, n row

determinants, and n column determinants).

Today there is wide application of quasideterminants in linear algebra ([2, 3]), and in

physics ([4, 5, 6]). Row and column determinants ([7, 8]) introduced relatively recently

are less well known. Purpose of the chapter is establishment of a relation of row-column

determinants with quasideterminants of a matrix over a quaternion algebra. The authors are

hopeful that the establishment of this relation can provide mutual development of both the

theory of quasideterminants and the theory of row-column determinants.
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1.1. Convention about Notations

There are different forms to write elements of a matrix. In this paper, we denote aij an

element of the matrix A. The index i labels rows, and the index j labels columns.

We use the following notation for different minors of the matrix A.

ai . the i-th row

AS . the minor obtained from A by selecting rows with index from the set S

Ai . the minor obtained from A by deleting row ai .

AS . the minor obtained from A by deleting rows with index from the set S

a. j the j-th column

A. T the minor obtained from A by selecting columns with index from the set T

A. j the minor obtained from A by deleting column a. j

A. T the minor obtained from A by deleting columns with index from the set T

A.j (b) the matrix obtained from A by replacing its j-th column by the column b

Ai. (b) the matrix obtained from A by replacing its i-th row by the row b

Considered notations can be combined. For instance, the record

Aii
k.(b)

means replacing of the k-th row by the vector b followed by removal of both the i-th row

and the i-th column.

As was noted in section 2.2 of the paper [9], we can define two types of matrix products:

either product of rows of first matrix over columns of second one, or product of columns of

first matrix over rows of second one. However, according to the theorem 2.2.5 in the paper

[9], this product is symmetric relative operation of transposition. Hence in the chapter, we

will restrict ourselves by traditional product of rows of first matrix over columns of second

one; and we do not indicate clearly the operation like it was done in [9].

1.2. Preliminaries. A Brief Overview of the Theory of Noncommutative

Determinants

Theory of determinants of matrices with noncommutative elements can be divided into

three groups regarding their methods of definition. Denote M(n, K) the ring of matrices

with elements from the ring K. One of the ways to determine determinant of a matrix of

M (n, K) is following ([11, 12, 13]).

Definition 1.1. Let the functional

d : M (n, K) → K

satisfy the following axioms.
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Axiom 1. d (A) = 0 iff A is singular (irreversible).

Axiom 2. ∀A, B ∈ M (n, K), d (A ·B) = d (A) · d (B).

Axiom 3. If we obtain a matrix A′ from matrix A either by adding of an arbitrary

row multiplied on the left with its another row or by adding of an arbitrary column

multiplied on the right with its another column, then

d
(

A′
)

= d (A)

Then the value of the functional d is called determinant of A ∈ M (n, K).

The known determinants of Dieudonné and Study are examples of such functionals.

Aslaksen [11] proved that determinants which satisfy Axioms 1, 2 and 3 take their value

in some commutative subset of the ring. It makes no sense for them such property of con-

ventional determinants as the expansion along an arbitrary row or column. Therefore a

determinantal representation of an inverse matrix using only these determinants is impossi-

ble. This is the reason that causes to introduce determinant functionals that do not satisfy

all Axioms. Dyson [13] considers Axiom 1 as necessary to determine a determinant.

In another approach, a determinant of a square matrix over a noncommutative ring is

considered as a rational function of entries of a matrix. The greatest success is achieved

by Gelfand and Retakh [14, 15, 16, 17] in the theory of quasideterminants. We present

introduction to the theory of quasideterminants in the section 5.

In third approach, a determinant of a square matrix over a noncommutative ring is con-

sidered as an alternating sum of n! products of entries of a matrix. However, it assumed

certain fixed order of factors in each term. E. H. Moore was first who achieved implementa-

tion of the key Axiom 1 using such definition of a noncommutative determinant. Moore had

done this not for all square matrices, but only for Hermitian. He defined the determinant of

a Hermitian matrix1 A = (aij)n×n over a division ring with involution by induction over n

following way (see [13])

MdetA =







a11, n = 1
n
∑

j=1
εijaijMdet (A(i → j)) , n > 1 (1.1)

Here εkj =

{

1, i = j

−1, i 6= j
, and A(i → j) denotes the matrix obtained from A by replac-

ing its j-th column with the i-th column and then by deleting both the i-th row and column.

Another definition of this determinant is presented in [11] by using permutations,

Mdet A =
∑

σ∈Sn

|σ|an11n12
· . . . · an1l1

n11
·an21n22

· . . . · anrl1
nr1

.

Here Sn is symmetric group of n elements. A cycle decomposition of a permutation σ has

form,

σ = (n11 . . . n1l1) (n21 . . .n2l2) . . . (nr1 . . . nrlr) .

1Hermitian matrix is such matrix A = (aij) that aij = aji.
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However, there was no any generalization of the definition of Moore’s determinant to

arbitrary square matrices. Freeman J. Dyson [13] pointed out the importance of this prob-

lem.

L. Chen [18, 19] offered the following definition of determinant of a square matrix over

the quaternion skew field H, by putting for A = (aij) ∈ M (n, H),

det A =
∑

σ∈Sn

ε (σ) an1i2 · ai2i3 . . . · aisn1
· . . . · anrk2

· . . . · aklnr ,

σ = (n1i2 . . . is) . . . (nrk2 . . . kr) ,
n1 > i2, i3, . . . , is; . . . , nr > k2, k3, . . . , kl,

n = n1 > n2 > . . . > nr ≥ 1.

Despite the fact that this determinant does not satisfy Axiom 1, L. Chen got a determinantal

representation of an inverse matrix. However it can not been expanded along arbitrary rows

and columns (except for n-th row). Therefore, L. Chen did not obtain a classical adjoint

matrix as well. For A = (α1, . . . , αm) over the quaternion skew field H, if ‖A‖ :=
det(A∗A) 6= 0, then ∃A−1 = (bjk), where

bjk =
1

‖A‖
ωkj ,

(

j, k = 1, n
)

,

ωkj = det (α1 . . .αj−1αnαj+1 . . . αn−1δk)
∗ (α1 . . . αj−1αnαj+1 . . .αn−1αj) .

Here αi is the i-th column of A, δk is the n-dimensional column with 1 in the k-th entry

and 0 in other ones. L. Chen defined ‖A‖ := det(A∗A) as the double determinant. If

‖A‖ 6= 0, then the solution of a right system of linear equations

∑n

j=1
αjxj = β

over H is represented by the following formula, which the author calls Cramer’s rule

xj = ‖A‖−1
Dj,

for all j = 1, n, where

Dj = det





























α∗
1

...

α∗
j−1

α∗
n

α∗
j+1

...

α∗
n−1

β∗





























(

α1 . . . αj−1 αn αj+1 . . . αn−1 αj

)

.

Here α∗
i is the i-th row of A∗ and β∗ is the n-dimensional vector-row conjugated with β.

In this chapter we explore the theory of row and column determinants which develops

the classical approach to the definition of determinant of a square matrix, as an alternating

sum of products of entries of a matrix but with a predetermined order of factors in each of

the terms of the determinant.
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2. Quaternion Algebra

A quaternion algebra H(a, b) (we also use notation

(

a, b

F

)

) is a four-dimensional

vector space over a field F with basis {1, i, j, k} and the following multiplication rules:

i2 = a,

j2 = b,
ij = k,

ji = −k.

The field F is the center of the quaternion algebra H(a, b).

In the algebra H(a, b) there are following mappings.

• A quadratic form

n : x ∈ H → n(x) ∈ F

such that

n(x · y) = n(x)n(y) x, y ∈ H

is called the norm on a quaternion algebra H.

• The linear mapping

t : x = x0 + x1i + x2j + x3k ∈ H → t(x) = 2x0 ∈ F

is called the trace of a quaternion. The trace satisfies permutability property of the

trace,

t (q · p) = t (p · q) .

From the theorem 10.3.3 in the paper [9], it follows

t(x) =
1

2
(x− ixi− jxj − kxk). (2.1)

• A linear mapping

x → x = t(x)− x (2.2)

is an involution. The involution has following properties

x = x,

x + y = x + y,

x · y = y · x.

A quaternion x is called the conjugate of x ∈ H. The norm and the involution satisfy

the following condition:

n (q) = n(q).

The trace and the involution satisfy the following condition,

t (x) = t(x).
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From equations (2.1), (2.2), it follows that

x = −
1

2
(x + ixi + jxj + kxk).

Depending on the choice of the field F, a and b, on the set of quaternion algebras there

are only two possibilities [20]:

1.

(

a, b

F

)

is a division algebra.

2.

(

a, b

F

)

is isomorphic to the algebra of all 2 × 2 matrices with entries from the field

F. In this case, quaternion algebra is splittable.

The most famous example of a non-split quaternion algebra is Hamilton’s quaternions

H = (−1,−1
R

), where R is real field. The set of quaternions can be represented as

H = {q = q0 + q1i + q2j + q3k; q0, q1, q2, q3 ∈ R},

where i2 = j2 = k2 = −1 and ijk = −1. Consider some non-isomorphic quaternion

algebra with division.

1.

(

a, b

R

)

is isomorphic to the Hamilton quaternion skew field H whenever a < 0 and

b < 0. Otherwise

(

a, b

R

)

is splittable.

2. If F is the rational field Q, then there exist infinitely many nonisomorphic division

quaternion algebras

(

a, b

Q

)

depending on choice of a < 0 and b < 0.

3. Let Qp be the p-adic field where p is a prime number. For each prime number p there

is a unique division quaternion algebra.

The famous example of a split quaternion algebra is split quaternions of James Cockle

HS(−1,1
R

), which can be represented as

HS = {q = q0 + q1i + q2j + q3k; q0, q1, q2, q3 ∈ R},

where i2 = −1, j2 = k2 = 1 and ijk = 1. Unlike quaternion division algebra, the

set of split quaternions is a noncommutative ring with zero divisors, nilpotent elements

and nontrivial idempotents. Recently there was conducted a number of studies in split

quaternion matrices (see, for ex. [21, 22, 23, 24]).

3. Introduction to the Theory of the Row and Column

Determinants over a Quaternion Algebra

The theory of the row and column determinants was introduced [7, 8] for matrices over

a quaternion division algebra. Now this theory is in development for matrices over a split

quaternion algebra. In the following two subsections we extend the concept of immanant

(permanent, determinant) to a split quaternion algebra using methods of the theory of the

row and column determinants.
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3.1. Definitions and Properties of the Column and Row Immanants

The immanant of a matrix is a generalization of the concepts of determinant and per-

manent. The immanant of a complex matrix was defined by Dudley E. Littlewood and

Archibald Read Richardson [25] as follows.

Definition 3.1. Let σ ∈ Sn denote the symmetric group on n elements. Let χ : Sn → C be

a complex character. For any n × n matrix A = (aij) ∈ Cn×n define the immanent of A

as

Immχ(A) =
∑

σ∈Sn

χ(σ)

n
∏

i=1

ai σ(i)

Special cases of immanants are determinants and permanents. In the case where χ is the

constant character (χ(x) = 1 for all x ∈ Sn), Immχ(A) is the permanent of A. In the case

where χ is the sign of the permutation (which is the character of the permutation group as-

sociated to the (non-trivial) one-dimensional representation), Immχ(A) is the determinant

of A.

Denote by Hn×m a set of n × m matrices with entries in an arbitrary (split) quaternion

algebra H and M (n, H) a ring of matrices with entries in H. For A = (aij) ∈ M (n, H) we

define n row immanants as follows.

Definition 3.2. The i-th row immanant of A = (aij) ∈ M (n, H) is defined by putting

rImmiA =
∑

σ∈Sn

χ(σ)ai ik1
aik1

ik1+1
. . .aik1+l1

i . . .aikr ikr+1
. . . aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ is written as follows

σ = (i ik1
ik1+1 . . . ik1+l1) (ik2

ik2+1 . . . ik2+l2) . . . (ikr ikr+1 . . . ikr+lr) . (3.1)

Here the index i starts the first cycle from the left and other cycles satisfy the following

conditions

ik2
< ik3

< . . . < ikr , ikt < ikt+s. (3.2)

for all t = 2, r and s = 1, lt.

Consequently we have the following definitions.

Definition 3.3. The i-th row permanent of A = (aij) ∈ M (n, H) is defined as

rperiA =
∑

σ∈Sn

ai ik1
aik1

ik1+1
. . .aik1+l1

i . . . aikr ikr+1
. . .aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ satisfies the conditions (3.1) and

(3.2).

Definition 3.4. The i-th row determinant of A = (aij) ∈ M (n, H) is defined as

rdetiA =
∑

σ∈Sn

(−1)n−r ai ik1
aik1

ik1+1
. . .aik1+l1

i . . . aikr ikr+1
. . .aikr+lr ikr

,

where left-ordered cycle notation of the permutation σ satisfies the conditions (3.1) and

(3.2), (since sign(σ) = (−1)n−r
).
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For A = (aij) ∈ M (n, H) we define n column immanants as well.

Definition 3.5. The j-th column immanant of A = (aij) ∈ M (n, H) is defined as

cImmjA =
∑

τ∈Sn

χ(τ)ajkr jkr+lr
. . . ajkr+1jkr

. . .aj jk1+l1
. . .ajk1+1jk1

ajk1
j ,

where right-ordered cycle notation of the permutation τ ∈ Sn is written as follows

τ = (jkr+lr . . . jkr+1jkr ) . . . (jk2+l2 . . . jk2+1jk2
) (jk1+l1 . . . jk1+1jk1

j) . (3.3)

Here the first cycle from the right begins with the index j and other cycles satisfy the fol-

lowing conditions

jk2
< jk3

< . . . < jkr , jkt < jkt+s, (3.4)

for all t = 2, r and s = 1, lt.

Consequently we have the following definitions as well.

Definition 3.6. The j-th column permanent of A = (aij) ∈ M (n, H) is defined as

rperjA =
∑

τ∈Sn

ajkr jkr+lr
. . .ajkr+1jkr

. . .aj jk1+l1
. . . ajk1+1jk1

ajk1
j,

where right-ordered cycle notation of the permutation σ satisfies the conditions (3.3) and

(3.4).

Definition 3.7. The j-th column determinant of A = (aij) ∈ M (n, H) is defined as

rdetjA =
∑

τ∈Sn

(−1)n−r ajkr jkr+lr
. . .ajkr+1jkr

. . .aj jk1+l1
. . . ajk1+1jk1

ajk1
j,

where right-ordered cycle notation of the permutation σ satisfies the conditions (3.3) and

(3.4).

Consider the basic properties of the column and row immanants over H.

Proposition 3.8. (The first theorem about zero of an immanant) If one of the rows (columns)

of A ∈ M (n, H) consists of zeros only, then rImmi A = 0 and cImmi A = 0 for all

i = 1, n.

Proof. The proof immediately follows from the definitions.

Denote by Ha and aH left and right principal ideals of H, respectively.

Proposition 3.9. (The second theorem about zero of an row immanant) Let A = (aij) ∈
M (n, H) and aki ∈ Hai and aij ∈ aiH, where n(ai) = 0 for k, j = 1, n and for all i 6= k.

Let a11 ∈ Ha1 and a22 ∈ a1H if k = 1, and akk ∈ Hak and a11 ∈ akH if k = i > 1,

where n(ak) = 0. Then rImmkA = 0.
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Proof. Let i 6= k. Consider an arbitrary monomial of rImmkA, if i 6= k,

d = χ(σ)akiaij . . . alm

where {l, m} ⊂ {1, ..., n}. Since there exists ai ∈ H such that n(ai) = 0, and aki ∈ Hai,

aij ∈ aiH, than akiaij = 0 and d = 0.

Let i = k = 1. Then an arbitrary monomial of rImm1A,

d = χ(σ)a11a22 . . . alm.

Since there exists a1 ∈ H such that n(a1) = 0, and a11 ∈ Ha1, a22 ∈ a1H, then a11a22 = 0

and d = 0.

If k = i > 1, then an arbitrary monomial of rImmkA,

d = χ(σ)akka11 . . .alm.

Since there exists ak ∈ H such that n(ak) = 0, and akk ∈ Hak , a11 ∈ akH, then akka11 =

0 and d = 0.

Proposition 3.10. (The second theorem about zero of an column immanant) Let A =
(aij) ∈ M (n, H) and aik ∈ aiH and aji ∈ Hai, where n(ai) = 0 for k, j = 1, n and

for all i 6= k. Let a11 ∈ a1H and a22 ∈ Ha1 if k = 1, and akk ∈ akH and a11 ∈ Hak if

k = i > 1, where n(ak) = 0. Then cImmkA = 0.

Proof. The proof is similar to the proof of the Proposition 3.9.

The proofs of the next theorems immediately follow from the definitions.

Proposition 3.11. If the i-th row of A = (aij) ∈ M (n, H) is left-multiplied by b ∈ H, then

rImmi Ai . (b · ai .) = b · rImmi A for all i = 1, n.

Proposition 3.12. If the j-th column of A = (aij) ∈ M (n, H) is right-multiplied by b ∈ H,

then cImmj A. j (a. j · b) = cImmj A · b for all j = 1, n.

Proposition 3.13. If for A = (aij) ∈ M (n, H) there exists t ∈ {1, ..., n} such that atj =
bj + cj for all j = 1, n, then for all i = 1, n

rImmi A = rImmi At . (b) + rImmi At . (c) ,
cImmi A = cImmi At . (b) + cImmi At . (c) ,

where b = (b1, . . . , bn), c = (c1, . . . , cn).

Proposition 3.14. If for A = (aij) ∈ M (n, H) there exists t ∈ {1, ..., n} such that ai t =

bi + ci for all i = 1, n, then for all j = 1, n

rImmj A = rImmj A. t (b) + rImmj A. t (c) ,

cImmj A = cImmj A. t (b) + cImmjA. t (c) ,

where b = (b1, . . . , bn)T , c = (c1, . . . , cn)T .
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Proposition 3.15. If A∗ is the Hermitian adjoint matrix (conjugate and transpose) of A ∈
M (n, H), then rImmi A

∗ = cImmi A for all i = 1, n.

Particular cases of these properties for the row-column determinants and permanents

are evident.

Remark 3.16. The peculiarity of the column immanant (permanent, determinant) is that,

at the direct calculation, factors of each of the monomials are written from right to left.

In Lemmas 3.17 and 3.18, we consider the recursive definition of the column and row

determinants. This definition is an analogue of the expansion of a determinant along a row

and a column in commutative case.

Lemma 3.17. Let Ri j be the right ij-th cofactor of A = (aij) ∈ M (n, H), namely

rdeti A =
n
∑

j=1
ai j · Ri j

for all i = 1, n. Then

Ri j =

{

−rdetj (Aii
.j(a. i)), i 6= j

rdetk Aii, i = j

k =

{

2, i = 1
1, i > 1

where the matrix (Aii
.j(a. i)) is obtained from A by replacing its j-th column with the i-th

column and then by deleting both the i-th row and column.

Lemma 3.18. Let Li j be the left ijth cofactor of entry ai j of matrix A = (aij) ∈
M (n, H), namely

cdetj A =
n
∑

i=1
Li j · ai j

for all j = 1, n. Then

Li j =

{

−cdeti (Ajj
i. (aj .)), i 6= j

cdetk Ajj, i = j

k =

{

2, j = 1
1, j > 1

where the matrix (Ajj
i. (aj .)) is obtained from A by replacing its ith row with the jth and

then by deleting both the jth row and column.

Remark 3.19. Clearly, an arbitrary monomial of each row or column determinant cor-

responds to a certain monomial of another row or column determinant such that both of

them have the same sign, consist of the same factors and differ only in their ordering. If

the entries of A are commutative, then rdet1 A = . . . = rdetnA = cdet1 A = . . . =
cdetnA.
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4. An Immanant of a Hermitian Matrix

If A∗ = A then A ∈ Hn×n is called a Hermitian matrix. In this section we consider

the key theorem about row-column immanants of a Hermitian matrix.

The following lemma is needed for the sequel.

Lemma 4.1. Let Tn be the sum of all possible products of n factors, each of their are either

hi ∈ H or hi for all i = 1, n, by specifying the ordering in the terms, Tn = h1 · h2 · . . . ·
hn + h1 · h2 · . . . · hn + . . . + h1 · h2 · . . . · hn. Then Tn consists of the 2n terms and

Tn = t (h1) t (h2) . . . t (hn) .

Theorem 4.2. If A ∈ M (n, H) is a Hermitian matrix, then

rImm1A = . . . = rImmnA = cImm1A = . . . = cImmnA ∈ F.

Proof. At first we note that if A = (aij) ∈ Hn×n is Hermitian, then we have aii ∈ F and

aij = aji for all i, j = 1, n.

We divide the set of monomials of rImmiA for some i ∈ {1, ..., n} into two subsets.

If indices of coefficients of monomials form permutations as products of disjoint cycles

of length 1 and 2, then we include these monomials to the first subset. Other monomials

belong to the second subset. If indices of coefficients form a disjoint cycle of length 1, then

these coefficients are ajj for j ∈ {1, ..., n} and ajj ∈ F.

If indices of coefficients form a disjoint cycle of length 2, then these entries are conju-

gated, aikik+1
= aik+1ik , and

aikik+1
· aik+1ik = aik+1ik · aik+1ik = n(aik+1ik) ∈ F.

So, all monomials of the first subset take on values in F.

Now we consider some monomial d of the second subset. Assume that its index permu-

tation σ forms a direct product of r disjoint cycles. Denote ik1
:= i, then

d = χ(σ)aik1
ik1+1

. . . aik1+l1
ik1

aik2
ik2+1

. . . aik2+l2
ik2

. . .aikm ikm+1
. . .×

×aikm+lm ikm
. . . aikr ikr+1

. . .aikr+lr ikr
= χ(σ)h1h2 . . . hm . . .hr ,

(4.1)

where hs = aiks iks+1
· . . . · aiks+ls iks

for all s = 1, r, and m ∈ {1, . . . , r}. If ls = 1, then

hs = aiks iks+1
aiks+1 iks

= n(aiks iks+1
) ∈ F. If ls = 0, then hs = aiks iks

∈ F. If ls = 0

or ls = 1 for all s = 1, r in (4.1), then d belongs to the first subset. Let there exists s ∈ In

such that ls ≥ 2. Then

hs = aiks iks+1
. . . aiks+ls iks

= aiks+ls iks
. . . aiks iks+1

= aiks iks+ls
. . .aiks+1iks

.

Denote by σs (iks) : = (iksiks+1 . . . iks+ls) a disjoint cycle of indices of d for some s ∈

{1, ..., r}, then σ = σ1 (ik1
) σ2 (ik2

) ...σr (ikr ). The disjoint cycle σs (iks) corresponds

to the factor hs. Then σ−1
s (iks) = (iksiks+lsiks+1 . . . iks+1) is the inverse disjoint cycle

and σ−1
s (iks) corresponds to the factor hs. By the Lemma 4.1, there exist another 2p − 1

monomials for d, (where p = r−ρ and ρ is the number of disjoint cycles of length 1 and 2),

such that their index permutations form the direct products of r disjoint cycles either σs (iks)
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or σ−1
s (iks) by specifying their ordering by s from 1 to r. Their cycle notations are left-

ordered according the to the Definition 3.2. These permutations are unique decomposition

of the permutation σ including their ordering by s from 1 to r. Suppose C1 is the sum of

these 2p − 1 monomials and d, then, by the Lemma 4.1, we obtain

C1 = χ(σ)α t(hν1
) . . . t(hνp) ∈ F.

Here α ∈ F is the product of coefficients whose indices form disjoint cycles of length 1 and

2, νk ∈ {1, . . . , r} for all k = 1, p.

Thus for an arbitrary monomial of the second subset of rImmi A, we can find the 2p

monomials such that their sum takes on a value in F. Therefore, rImmi A ∈ F.

Now we prove the equality of all row immanants of A. Consider an arbitrary rImmj A

such that j 6= i for all j = 1, n. We divide the set of monomials of rImmj A into two

subsets using the same rule as for rImmi A. Monomials of the first subset are products of

entries of the principal diagonal or norms of entries of A. Therefore they take on a value in

F and each monomial of the first subset of rImmi A is equal to a corresponding monomial

of the first subset of rImmj A.

Now consider the monomial d1 of the second subset of monomials of rImmj A con-

sisting of coefficients that are equal to the coefficients of d but they are in another order.

Consider all possibilities of the arrangement of coefficients in d1.

(i) Suppose that the index permutation σ′ of its coefficients form a direct product of r
disjoint cycles and these cycles coincide with the r disjoint cycles of d but differ by their

ordering. Then σ′ = σ and we have

d1 = χ(σ)αhµ . . .hλ,

where {µ, . . . , λ} = {ν1, . . . , νp}. By the Lemma 4.1, there exist 2p − 1 monomials of the

second subset of rImmj A such that each of them is equal to a product of p factors either

hs or hs for all s ∈ {µ, . . . , λ}. Hence by the Lemma 4.1, we obtain

C2 = χ(σ)α t(hµ) . . . t(hλ) = χ(σ) α t(hν1
) . . . t(hνp) = C1.

(ii) Now suppose that in addition to the case (i) the index j is placed inside some disjoint

cycle of the index permutation σ of d, e.g., j ∈ {ikm+1, ..., ikm+lm}. Denote j = ikm+q .

Considering the above said and σkm+1(ikm+1) = σkm+q(ikm+q), we have σ′ = σ. Then d1

is represented as follows:

d1 = χ(σ)aikm+q ikm+q+1
. . . aikm+lm ikm

aikm ikm+1
. . .×

×aikm+q−1ikm+q
aikµ ikµ+1

. . . aikµ+lµ ikµ
. . . aikλ

ikλ+1
. . .aikλ+lλ

ikλ
=

= χ(σ)αh̃mhµ . . .hλ,

(4.2)

where {m, µ, . . . , λ} = {ν1, . . . , νp}. Except for h̃m, each factor of d1 in (4.2) corresponds

to the equal factor of d in (4.1). By the rearrangement property of the trace, we have

t(h̃m) = t(hm). Hence by the Lemma 4.1 and by analogy to the previous case, we obtain,

C2 = χ(σ)α t(h̃m) t(hµ) . . . t(hλ) =
= χ(σ) α t(hν1

) . . . t(hm) . . . t(hνp) = C1.
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(iii) If in addition to the case (i) the index i is placed inside some disjoint cycles of the index

permutation of d1, then we apply the rearrangement property of the trace to this cycle. As

in the previous cases we find 2p monomials of the second subset of rImmj A such that by

Lemma 4.1 their sum is equal to the sum of the corresponding 2p monomials of rImmiA.

Clearly, we obtain the same conclusion at association of all previous cases, then we apply

twice the rearrangement property of the trace.

Thus, in any case each sum of 2p corresponding monomials of the second subset of

rImmj A is equal to the sum of 2p monomials of rImmi A. Here p is the number of

disjoint cycles of length more than 2. Therefore, for all i, j = 1, n we have

rImmi A = rImmj A ∈ F.

The equality cImmi A = rImmi A for all i = 1, n is proved similarly.

Remark 4.3. If A ∈ Hn×n is skew-hermitian (A = −A∗), then the Theorem 4.2 is not

meaningful. It follows from the next example.

Example 4.4. Consider the following skew-hermitian matrix over the split quaternions of

James Cockle HS(−1,1
R

),

A =

(

j 2 + i

−2 + i −k

)

.

Since
rImm1 A = −jk − (2 + i)(−2 + i) = 5 + i,
rImm2 A = −(−2 + i)(2 + i) − kj = 5 − i,

then rImm1 A 6= rImm2 A.

Since the Theorem 4.2, we have the following definition.

Definition 4.5. Since all column and row immanants of a Hermitian matrix over H are

equal, we can define the immanant (permanent, determinant) of a Hermitian matrix A ∈

Hn×n . By definition, we put for all i = 1, n

Imm A := rImmi A = cImmi A,

per A := rperi A = cperi A,
det A := rdeti A = cdeti A.

4.1. Cramer’s Rule for System of Linear Equations over a Quaternion

Division Algebra

In this subsection we shall be consider H as a quaternion division algebra especially

since quasideterminants are defined over the skew field as well.

Properties of the determinant of a Hermitian matrix is completely explored in [7, 8] by

its row and column determinants. Among all, consider the following.

Theorem 4.6. If the i-th row of the Hermitian matrix A ∈ M (n, H) is replaced with a left

linear combination of its other rows

ai . = c1ai1 . + . . . + ckaik .
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where cl ∈ H for all l = 1, k and {i, il} ⊂ {1, . . . , n}, then for all i = 1, n

cdetiAi . (c1 · ai1 . + . . . + ck · aik . ) = rdetiAi . (c1 · ai1 . + . . . + ck · aik . ) = 0.

Theorem 4.7. If the j-th column of a Hermitian matrix A ∈ M (n, H) is replaced with a

right linear combination of its other columns

a. j = a. j1c1 + . . . + a. jk
ck

where cl ∈ H for all l = 1, k and {j, jl} ⊂ {1, . . . , n} , then for all j = 1, n

cdetjA. j (a. j1 · c1 + . . . + a. jk
· ck) = rdetjA. j (a. j1 · c1 + . . . + a. jk

· ck) = 0.

The following theorem on the determinantal representation of an inverse matrix of Her-

mitian follows immediately from these properties.

Theorem 4.8. There exist a unique right inverse matrix (RA)−1 and a unique left inverse

matrix (LA)−1 of a nonsingular Hermitian matrix A ∈ M (n, H), (det A 6= 0), where

(RA)−1 = (LA)−1 =: A−1. Right inverse and left inverse matrices has following deter-

minantal representation

(RA)−1 =
1

detA









R11 R21 · · · Rn1

R12 R22 · · · Rn2

· · · · · · · · · · · ·
R1n R2n · · · Rnn









,

(LA)−1 =
1

detA









L11 L21 · · · Ln1

L12 L22 · · · Ln2

· · · · · · · · · · · ·
L1n L2n · · · Lnn









,

where Rij , Lij are right and left ij-th cofactors of A, respectively, for all i, j = 1, n.

To obtain the determinantal representation for an arbitrary inverse matrix over a quater-

nion division algebra H, we consider the right AA∗ and left A∗A corresponding Hermitian

matrices.

Theorem 4.9 ([7]). If an arbitrary column of A ∈ Hm×n is a right linear combination of

its other columns, or an arbitrary row of A∗ is a left linear combination of its other rows,

then detA∗A = 0.

Since principal submatrices of a Hermitian matrix are also Hermitian, then the basis

principal minor may be defined in this noncommutative case as a principal nonzero minor

of a maximal order. We also can introduce the notion of the rank of a Hermitian matrix by

principal minors, as a maximal order of a principal nonzero minor. The following theorem

establishes the correspondence between the rank by principal minors of a Hermitian matrix

and the rank of the corresponding matrix that are defined as a maximum number of right-

linearly independent columns or left-linearly independent rows, which form a basis.

Theorem 4.10 ([7]). A rank by principal minors of a Hermitian matrix A∗A is equal to its

rank and a rank of A ∈ Hm×n .
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Theorem 4.11 ([7]). If A ∈ Hm×n , then an arbitrary column of A is a right linear com-

bination of its basic columns or arbitrary row of A is a left linear combination of its basic

rows.

It implies a criterion for the singularity of a corresponding Hermitian matrix.

Theorem 4.12 ([7]). The right linearly independence of columns of A ∈ Hm×n or the left

linearly independence of rows of A∗ is the necessary and sufficient condition for

detA∗A 6= 0

Theorem 4.13 ([7]). If A ∈ M (n, H), then detAA∗ = detA∗A.

In the following example, we shall prove the Theorem 4.13 for the case n = 2.

Example 4.14. Consider the matrix A =

(

a11 a12

a21 a22

)

, then A∗ =

(

a11 a21

a12 a22

)

. Respec-

tively, we have

AA∗ =

(

a11a11 + a12a12 a11a21 + a12a22

a21a11 + a22a12 a21a21 + a22a22

)

,

A∗A =

(

a11a11 + a21a21 a11a12 + a21a22

a12a11 + a22a21 a12a12 + a22a22

)

.

According to thw Theorem 4.2 and the Definition 4.5, we have

det AA∗ = rdet1AA∗,

det A∗A = rdet1A
∗A

According to the Lemma 3.17

detAA∗ = (AA∗)11(AA∗)22 − (AA∗)12(AA∗)21

= (a11a11 + a12a12)(a21a21 + a22a22)

−(a11a21 + a12a22)(a21a11 + a22a12)
= a11a11a21a21 + a12a12a21a21

+a11a11a22a22 + a12a12a22a22

−a11a21a21a11 − a12a22a21a11

−a11a21a22a12 − a12a22a22a12

= a12a12a21a21 + a11a11a22a22

−a12a22a21a11 − a11a21a22a12

, (4.3)

detA∗A = (A∗A)11(A
∗A)22 − (A∗A)12(A

∗A)21

= (a11a11 + a21a21)(a12a12 + a22a22)
−(a11a12 + a21a22)(a12a11 + a22a21)

= a11a11a12a12 + a21a21a12a12

+a11a11a22a22 + a21a21a22a22

−a11a12a12a11 − a21a22a12a11

−a11a12a22a21 − a21a22a22a21

= a21a21a12a12 + a11a11a22a22

−a21a22a12a11 − a11a12a22a21

. (4.4)
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Positive terms in equations (4.3), (4.4) are real numbers and they obviously coincide. To

prove equation

a12a22a21a11 + a11a21a22a12 = a21a22a12a11 + a11a12a22a21 (4.5)

we use the rearrangement property of the trace of elements of the quaternion algebra,

t(pq) = t(qp). Indeed,

a12a22a21a11 + a11a21a22a12 = a12a22a21a11 + a12a22a21a11 = t(a12a22a21a11),

a21a22a12a11 + a11a12a22a21 = a11a12a22a21 + a11a12a22a21 = t(a11a12a22a21)

Then by the rearrangement property of the trace, we obtain (4.5).

According to the Theorem 4.13, we introduce the concept of double determinant. For

the first time this concept was introduced by L. Chen ([18]).

Definition 4.15. The determinant of corresponding Hermitian matrices is called the double

determinant of A ∈ M (n, H), i.e., ddetA := det (A∗A) = det (AA∗) .

If H is the Hamilton’s quaternion skew field H, then the following theorem establishes

the validity of Axiom 1 for the double determinant.

Theorem 4.16. If {A, B} ⊂ M (n, H), then ddet (A ·B) = ddetA · ddetB.

Unfortunately, if a non-Hermitian matrix is not full rank, then nothing can be said about

singularity of its row and column determinant. We show it in the following example.

Example 4.17. Consider the matrix

A =

(

i j

j −i

)

.

Its second row is obtained from the first row by left-multiplying by k. Then, by the Theorem

4.12, ddetA = 0. Indeed,

A∗A =

(

−i −j
−j i

)

·

(

i j
j −i

)

=

(

2 −2k
2k 2

)

.

Then ddetA = 4 + 4k2 = 0. However

cdet1A = cdet2A = rdet1A = rdet2A = −i2 − j2 = 2.

At the same time rankA = 1, that corresponds to the Theorem 4.10.

The correspondence between the double determinant and the noncommutative determi-

nants of Moore, Stady and Dieudonné are as follows,

ddetA = Mdet (A∗A) = SdetA = Ddet2A.

Definition 4.18. Let ddetA = cdetj (A∗A) =
∑

i

Lij · aij for j = 1, n. Then Lij is

called the left double ij-th cofactor of A ∈ M (n, H).
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Definition 4.19. Let ddetA = rdeti (AA∗) =
∑

j

aij ·Rij for i = 1, n. Then Rij is called

the right double ij-th cofactor of A ∈ M (n, H).

Theorem 4.20. The necessary and sufficient condition of invertibility of a matrix A =
(aij) ∈ M(n, H) is ddetA 6= 0. Then ∃A−1 = (LA)−1 = (RA)−1

, where

(LA)−1 = (A∗A)−1
A∗ =

1

ddetA









L11 L21 . . . Ln1

L12 L22 . . . Ln2

. . . . . . . . . . . .
L1n L2n . . . Lnn









(4.6)

(RA)−1 = A∗ (AA∗)−1 =
1

ddetA∗









R 11 R 21 . . . R n1

R 12 R 22 . . . R n2

. . . . . . . . . . . .
R 1n R 2n . . . R nn









(4.7)

and Lij = cdetj(A
∗A). j (a∗. i), R ij = rdeti(AA∗)i.

(

a∗j .

)

for all i, j = 1, n.

Remark 4.21. In the Theorem 4.20, the inverse matrix A−1 of an arbitrary matrix A ∈
M(n, H) under the assumption of ddetA 6= 0 is represented by the analog of the classical

adjoint matrix. If we denote this analog of the adjoint matrix over H by Adj[[A]], then the

next formula is valid over H:

A−1 =
Adj[[A]]

ddetA
.

An obvious consequence of a determinantal representation of the inverse matrix by the

classical adjoint matrix is Cramer’s rule.

Theorem 4.22. Let

A · x = y (4.8)

be a right system of linear equations with a matrix of coefficients A ∈ M(n, H), a column

of constants y = (y1, . . . , yn)T ∈ Hn×1, and a column of unknowns x = (x1, . . . , xn)T . If

ddetA 6= 0, then (4.8) has a unique solution that has represented as follows,

xj =
cdetj(A

∗A).j (f)

ddetA
, ∀j = 1, n (4.9)

where f = A∗y.

Theorem 4.23. Let

x · A = y (4.10)

be a left system of linear equations with a matrix of coefficients A ∈ M(n, H), a column

of constants y = (y1, . . . , yn) ∈ H1×n and a column of unknowns x = (x1, . . . , xn). If

ddetA 6= 0, then (4.10) has a unique solution that has represented as follows,

xi =
rdeti (AA∗)i. (z)

ddetA
, ∀i = 1, n (4.11)

where z = yA∗.
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Equations (4.9) and (4.11) are the obvious and natural generalizations of Cramer’s rule

for systems of linear equations over a quaternion division algebra. As follows from the

Theorem 4.8, the closer analog to Cramer’s rule can be obtained in the following specific

cases.

Theorem 4.24. Let A ∈ M(n, H) be Hermitian in (4.8). Then the solution of (4.8) has

represented by the equation,

xj =
cdetjA.j (y)

det A
, ∀j = 1, n.

Theorem 4.25. Let A ∈ M(n, H) be Hermitian in (4.10). Then the solution of (4.10) has

represented as follows,

xi =
rdetiAi. (y)

det A
, ∀i = 1, n.

An application of the column-row determinants in the theory of generalized inverse

matrices over the quaternion skew field recently has been received in [26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38].

5. Quasideterminants over a Quaternion Division Algebra

Theorem 5.1. Suppose a matrix

A =





a11 ... a1n

... ... ...
an1 ... ann





with entries from a quaternion division algebra has an inverse A−1.2 Then a minor of the

inverse matrix satisfies the following equation, provided that the inverse matrices exist

((A−1)IJ )−1 = AJI −A.I
J.(A

JI)−1AJ.
.I (5.1)

Proof. Definition of an inverse matrix leads to the system of linear equations

AJI(A−1)I.
.J + AJ.

.I(A
−1)IJ = 0 (5.2)

A.I
J.(A

−1)I.
.J + AJI(A

−1)IJ = I (5.3)

where I is a unit matrix. We multiply (5.2) by
(

AJI
)−1

(A−1)I.
.J + (AJI)−1AJ.

.I(A
−1)IJ = 0 (5.4)

Now we can substitute (5.4) into (5.3)

AJI(A
−1)IJ −A.I

J.(A
JI)−1AJ.

.I(A
−1)IJ = I (5.5)

(5.1) follows from (5.5).

2This statement and its proof are based on statement 1.2.1 from [17] (page 8) for matrix over free division

ring.
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Corollary 5.2. Suppose a matrix A has the inverse matrix. Then elements of the inverse

matrix satisfy to the equation

((A−1)ij)
−1 = aji − A.i

j.(A
ji)−1A

j.
.i (5.6)

Example 5.3. Consider a matrix

A =

(

a11 a12

a21 a22

)

According to (5.6)

(A−1)11 = (a11 − a12(a22)
−1 a21)

−1 (5.7)

(A−1)21 = (a21 − a22(a12)
−1 a11)

−1 (5.8)

(A−1)12 = (a12 − a11(a21)
−1 a22)

−1 (5.9)

(A−1)22 = (a22 − a21(a11)
−1 a12)

−1 (5.10)

We call a matrix

HA = ((HA)ij) = ((aji)
−1) (5.11)

a Hadamard inverse of3 A.

Definition 5.4. The (ji)-quasideterminant of A is formal expression

|A|ji = (HA−1)ji = ((A−1)ij)
−1 (5.12)

We consider the (ji)-quasideterminant as an element of the matrix |A| , which is called a

quasideterminant.

Theorem 5.5. Expression for the (ji)-quasideterminant has form

|A|ji = aji −A.i
j.(A

ji)−1A
j.
.i (5.13)

|A|ji = aji −A.i
j. H|Aji|Aj.

.i (5.14)

Proof. The statement follows from (5.6) and (5.12).

Example 5.6. Let

A =

(

1 0
0 1

)

(5.15)

It is clear from (5.7) and (5.10) that (A−1)11 = 1 and (A−1)22 = 1. However

expression for (A−1)21 and (A−1)12 cannot be defined from (5.8) and (5.9) since (a21−

a22(a12)
−1 a11)

−1 = (a12−a11(a21)
−1 a22)

−1 = 0. We can transform these expressions.

For instance

(A−1)21 = (a21 − a22(a12)
−1 a11)

−1

= (a11((a11)
−1 a12 − (a21)

−1 a22))
−1

= ((a21)
−1 a11(a21(a11)

−1 a12 − a22))
−1

= (a11(a21(a11)
−1 a12 − a22))

−1 a21

3See also page 4 in paper [16].
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It follows immediately that (A−1)21 = 0. In the same manner we can find that (A−1)12 =
0. Therefore,

A−1 =

(

1 0

0 1

)

(5.16)

From the Example 5.6 we see that we cannot always use Equation (5.6) to find elements

of the inverse matrix and we need more transformations to solve this problem. From the

theorem 4.6.3 in the paper [9], it follows that if

rank





a11 ... a1n

... ... ...

an1 ... ann



 ≤ n − 2

then |A|ij for all i, j = 1, n is not defined. From this, it follows that although a quasideter-

minant is a powerful tool, use of a determinant is a major advantage.

Theorem 5.7. Let a matrix A have an inverse. Then for any matrices B and C equation

B = C (5.17)

follows from the equation

BA = CA (5.18)

Proof. Equation (5.17) follows from (5.18) if we multiply both parts of (5.18) over A−1.

Theorem 5.8. The solution of a nonsingular system of linear equations

Ax = b (5.19)

is determined uniquely and can be presented in either form4

x = A−1b (5.20)

x = H|A| b (5.21)

Proof. Multiplying both sides of (5.19) from left by A−1 we get (5.20). Using the Defini-

tion 5.4, we get (5.21). Since the Theorem 5.7, the solution is unique.

6. Relation of Row-Column Determinants

with Quasideterminants

Theorem 6.1. If A ∈ M(n, H) is an invertible matrix, then, for arbitrary p, q = 1, n, we

have the following representation of the pq-quasideterminant

| A |pq=
ddetA · cdetq(A∗A). q

(

a∗. p
)

n(cdetq(A∗A). q

(

a∗. p
)

)
, (6.1)

4See similar statement in the theorem 1.6.1 in the paper [17] on pagen 19.
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| A |pq=
ddetA · rdetp(AA∗)p .

(

a∗q .

)

n(rdetp(AA∗)p .

(

a∗q .

)

)
. (6.2)

Proof. Let A−1 = (bij) to A ∈ M(n, H). Equation (5.12) reveals the relationship between

a quasideterminant | A |p,q of A ∈ M(n, H) and elements of the inverse matrix A−1 =
(bij), namely

| A |pq= b−1
qp

for all p, q = 1, n. At the same time, the theory of row and column determinants (the

theorem 4.20) gives us representation of the inverse matrix through its left (4.6) and right

(4.7) double cofactors. Thus, accordingly, we obtain

| A |pq= b−1
qp =

(

Lpq

ddetA

)−1

=

(

cdetq(A
∗A). q

(

A∗
. p

)

ddetA

)−1

, (6.3)

| A |pq= b−1
qp =

(

Rpq

ddetA

)−1

=

(

rdetp(AA∗)p .

(

A∗
q .

)

ddetA

)−1

. (6.4)

Since ddetA 6= 0 ∈ F, then ∃(ddetA)−1 ∈ F. It follows that

cdetq(A
∗A). q

(

A∗
. p

)−1
=

cdetq(A∗A). q

(

A∗
. p

)

n(cdetq(A∗A). q

(

A∗
. p

)

)
, (6.5)

rdetp(AA∗)p .

(

A∗
q .

)−1
=

rdetp(AA∗)p .

(

A∗
q .

)

n(rdetp(AA∗)p .

(

A∗
q .

)

)
. (6.6)

Substituting (6.5) into (6.3), and (6.6) into (6.4), we accordingly obtain (6.1) and (6.2).

We proved the theorem.

Equation (6.1) gives an explicit representation of a quasideterminant | A |p,q of A ∈
M(n, H) for all p, q = 1, n by the column determinant of its corresponding left Hermitian

matrix A∗A, and (6.2) does by the row determinant of its corresponding right Hermitian

matrix AA∗.

Example 6.2. Consider a matrix

A =

(

a11 a12

a21 a22

)

According to (5.13)

|A| =

(

a11 − a12(a22)
−1 a21 a12 − a11(a21)

−1 a22

a21 − a22(a12)
−1 a11 a22 − a21(a11)

−1 a12

)

(6.7)

Our goal is to find this quasideterminant using the Theorem 6.1. It is evident that

A∗ =

(

a11 a21

a12 a22

)

A∗A =

(

n(a11) + n(a21) a11a12 + a21a22

a12a11 + a22a21 n(a12) + n(a22)

)

.

Complimentary Contributor Copy



Relation of Row-Column Determinants with Quasideterminants ... 321

Calculate the necessary determinants

ddetA = rdet1(A
∗A)

= (n(a11) + n(a21)) · (n(a12) + n(a22))

−(a11a12 + a21a22) · (a12a11 + a22a21)
= n(a11)n(a12) + n(a11)n(a22) + n(a21)n(a12) + n(a21)n(a22)

−a11a12a12a11 − a11a12a22a21 − a21a22a12a11 − a21a22a22a21

= n(a11)n(a22) + n(a21)n(a12) − (a11a12a22a21 + a11a12a22a21)

= n(a11)n(a22) + n(a21)n(a12) − t(a11a12a22a21)

cdet1(A
∗A).1(a

∗
.2) = cdet1

(

a21 a11a12 + a21a22

a22 n(a12) + n(a22)

)

= n(a12)a21 + n(a22)a21 − a11a12a22 − a21a22a22

= n(a12)a21 − a11a12a22.

Then

cdet1(A∗A).1(a∗.2) = n(a12)a21 − a22a12a11,

n(cdet1(A
∗A).1(a

∗
.2)) = cdet1(A∗A).1(a∗.2) · cdet1(A

∗A).1(a
∗
.2)

= (n(a12)a21 − a22a12a11) · (n(a12)a21 − a11a12a22)
= n2(a12)n(a21) − n(a12)a21a11a12a22

−n(a12)a22a12a11a21 + a22a12a11a11a12a22

= n(a12)(n(a12)n(a21) − t(a11a12a22a21) + n(a21)n(a12))

= n(a12)ddetA.

Following (6.1), we obtain

|A|21 =
ddetA

n(cdet1(A∗A).1(a
∗
.2))

cdet1(A∗A).1(a∗.2)

=
ddetA

n(a12)ddetA
cdet1(A∗A).1(a

∗
.2)

=
1

n(a12)
· cdet1(A∗A).1(a∗.2)

=
1

n(a12)
· (n(a12)a21 − a22a12a11)

= a21 − a22(a12)
−1a11.

(6.8)

The last expression in (6.8) coincides with the expression |A|21 in (6.7).

7. Conclusion

In the chapter we consider two approaches to define a noncommutative determinant,

row-column determinants and quasideterminants. These approaches of studying of a matrix

with entryes from non commutative division ring have their own field of applications.

The theory of the row and column determinants as an extension of the classical defi-

nition of determinant has been elaborated for matrices over a quaternion division algebra.

It has applications in the theories of matrix equations and of generalized inverse matrices
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over the quaternion skew field. Now it is in development for matrices over a split quaternion

algebra. In the chapter we have extended the concepts of an immanant, a permanent and a

determinant to a split quaternion algebra and have established their basic properties.

Quasideterminants of Gelfand-Retax are rational matrix functions that requires the in-

vertibility of certain submatrices. Now they are widely used. Though we can use quaside-

terminant in any division ring,5 row-column determinant is more attractive to find solution

of system of linear equations when division ring has conjugation.

In the chapter we have derived relations of row-column determinants with quasideter-

minants of a matrix over a quaternion division algebra. The use of equations (6.1) and (6.2)

allows us direct calculation of quasideterminants. It already gives significance in establish-

ing these relations.
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Abstract 

First order chemical reaction mechanisms are modeled through Ordinary Differential 

Equations (O.D.E.) systems of the form: , being the chemical species 

concentrations vector, its time derivative, and the associated system matrix. 

A typical example of these reactions, which involves two species, is the Mutarotation of 

Glucose [1], which has a corresponding matrix with a null eigenvalue whereas the other one is 

negative.  

A very simple example with three chemical compoundsis grape juice, when it is 

converted into wine and then transformed into vinegar [2]. A more complicated example,also 

involving three species, is the adsorption of Carbon Dioxide over Platinum surfaces [3]. 

Although, in these examples the chemical mechanisms are very different, in both cases the 

O.D.E. system matrix has two negative eigenvalues and the other one is zero. Consequently, 

in all these cases that involve two or three chemical species, solutions show a weak stability 

(i.e., they are stable but not asymptotically). This fact implies that small errors due to 

measurements in the initial concentrations will remain bounded, but they do not tend to vanish 

as the reaction proceeds. 

In order to know if these results can be extended or not to other chemical mechanisms, a 

possible general result is studied through an inverse modeling approach, like in previous 

papers ([3, 4, 5]). For this purpose, theoretical mechanisms involving two or more species are 

proposed and a general type of matrices – so-called First Order Chemical Kinetics 

Mechanisms (F.O.C.K.M.) matrices – is studied from the eigenvalues and eigenvectors view 

point. 

This chapter shows that in an F.O.C.K.M. matrix all columns add to zero, all the diagonal 

elements are non-positive and all the other matrix entries are non-negative. Because of this 

particular structure, the Gershgorin Circles Theorem [6] can be applied to show that all the 

eigenvalues are negative or zero. Moreover, it can be proved that in the case of the null 
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eigenvalues – under certain conditions – algebraic and geometric multiplicities give the same 

number. 

As an application of these results, several conclusions about the stability of the O.D.E. 

solutions are obtained for these chemical reactions, and its consequences on the propagation 

of concentrations and/or surface concentration measurement errors, are analyzed. 

Introduction 

A typical example of first order O.D.E. is given by the mathematical model 

corresponding to the unimolecular chemical reaction. This separable variables O.D.E. 

problem is usually included in classical mathematics textbooks like Courant [7].  

The original problem comes from an important paper published by L.E. Wilhelmy in 

1850 [8]. This German physicist studied the inversion of sugar with acids, using a new 

technique (Polarimetry) for evaluating the dependency of reaction velocity on the quantity of 

reactants and temperature. As S. Zambelli mentioned, “in this paper probably appeared the 

first differential equation in chemistry” and “although written in a prestigious journalthe 

paper passed unnoticed by contemporary scholars. It will be rediscovered only in 1884 by 

Ostwald” [9]. 

The O.D.E. proposed by Wilhelmy was: 

  (1) 

where the reaction velocity is the negative derivative of , the sugar quantity in time , is the 

acid quantity and finally, represents the quantity of inverted sugar in the differential time . 

If there is an excess of acid, then can be considered as a constant.Wilhelmy also verified that 

remains almost constant in time at a certain temperature. Then, the O.D.E. solution under 

these conditions is: 

  (2) 

The O.D.E. problem and the corresponding solution is the same as Courant’s textbook 

example, but with a different notation. 

This unimolecular first order chemical reaction can be schematized more easily as 

follows: 

  (3) 

where  represents sugar, is time, is the kinetic constant and is the inverted sugar. The 

corresponding O.D.E. mathematical model is:  

  (4) 

where  represents the concentration of substance , is time and the minus sign expresses 

that the sugar is being transformed and its concentration diminishes with time. 

The O.D.E. solution is: 

MZS
dt

dZ


dt

)exp(0 MStZZ 

BA k

A

 
 Ak

dt

Ad


 A
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  (5) 

being  the initial concentration of the reactant. 

In both cases (Courant’s textbook and Wilhelmy’s paper), the authors were concerned 

about the sugar concentration and its variation against time. Now, if the inverted sugar 

concentration is also considered, then we will have the following O.D.E. system:  

  (6) 

that corresponds to the following vectorial O.D.E. problem: , where  

is the concentrations vector, is its time derivative and is the associated system matrix.  

One more interesting problem takes place when the reaction between and is reversible. In 

this case, we will have: 

 and  (7) 

where  and are the corresponding kinetic constants. 

This situation can be schematized as:  

  

(8) 

And the O.D.E. system will be:  

  (9) 

Once again, this system can be written more easily as , being in this case: 

  

(10) 

A real-life example of this chemical reaction is given by the Mutarotation of Glucose [1]. 

It is important to note that in both cases (i.e., the irreversible reaction and the reversible 

one), there is a negative eigenvalue and the other one is zero. In fact, as the kinetic constants 

are always positive, the matrix eigenvalues are and for the irreversible reaction (Eq. 3), while 

in the reversible one (Eq. 8), the corresponding eigenvalues are and (see [3] for this result). 

An example involving three different species takes place when a chemical substance 

reacts giving a chemical compound which reacts again to give , the final product of the 

    )exp(0 ktAA 

 0A

 
 

 
 














Bk
dt

Bd

Ak
dt

Ad

AXX 
 
  











B

A
X

X

BA K AB k

K

BA
k

K





 
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 
   













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dt
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dt
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AXX 
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










kK
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A

C
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whole reactions sequence [2]. This is a very common situation in real life, for example, when 

grape juice is converted into wine and then, it is transformed into vinegar. 

This sequence of reactions is a first order chemical kinetics mechanism (F.O.C.K.M), 

which can be represented as follows: 

  (11) 

where  and are the corresponding kinetic constants. 

In the production of wine and vinegar, is a carbohydrate, is ethylic alcohol, and is acetic 

acid. The mathematical model for this F.O.C.K.M. is the following: 

  (12) 

and the associated matrix is: 

  (13) 

whose eigenvalues are obvious , and (note that the system matrix is a triangular one). 

Another interesting case involving three species comes from the study of the adsorption 

of Carbon Dioxide ( ) on Platinum ( ) surfaces [3-10-11]. The research found three 

different adsorbates,  ,  and , and their surface concentrations were measured by 

conventional electrochemical techniques. Several mechanisms were proposed and the 

theoretical curves were compared with the experimental ones. The best fit was obtained by 

the following mechanism:  

  

(14) 

If represents the adsorbate  surface concentration and , , and are the kinetic 

constants, the corresponding mathematical model [3] is: 

321
21 EEE
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(15) 

The associated system matrix is:  

  

(16) 

which has the following eigenvalues:  , and , as it was proved in 

[3]. 

It can be noted that once again – like in all the other cases – all the eigenvalues are 

negative, except one, which is zero. 

In all the previous examples, the chemical or electrochemical processes considered were 

quite different; however in all of them the mathematical models showed a certain regularity 

that poses the following questions: 

 

 Is there any general form for the associated matrices corresponding to the 

F.O.C.K.M. proposed in the examples? If so, could this form be generalized to any 

F.O.C.K.M.? 

 Can it be proved that all the eigenvalues of the F.O.C.K.M. matrices are negative 

except one, which is always zero? 

 In all the previous examples the O.D.E. system solutions are stable but not 

asymptotically [3-12]. Is it a general result valid for any F.O.C.K.M.? 

 Which would be the practical consequences of the previous statements if they were 

true? 

 

These questions, their answers, and possible generalizations among other issues will be 

considered in this book chapter, following an inverse modeling approach [3-4-5-13-14], i.e., 

proposing different theoretical F.O.C.K.M. and analyzing the corresponding O.D.E. systems 

and their associated matrices, in order to get general results and/or interesting 

counterexamples. 

A General Form for F.O.C.K.M. Matrices 

Let us consider again two chemical substances and . If all the possible first order 

chemical reactions take place, we will have a mechanism like: and , previously 

analyzed in (Eq. 7). For this mechanism, we refer back to Eq. 9 and 10, the corresponding 

O.D.E. system is:  
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and its associated matrix is: 

  

 

It is easy to note that in any other simpler F.O.C.K.M., like (Eq. 3), the O.D.E. system 

(refers back to Eq. 6): 

   

and its associated matrix are just particular cases of (Eq. 9) and (Eq. 10), with a null constant 

and a different notation. 

In a similar way, if three chemical species , and  are involved, and all the possible 

first order reactions take place, we havethe following mechanism: 

 , and  (17) 

using the notation of a previous article [3].

 For such mechanism, the mathematical model can be written as: 

  

(18) 

where the concentrations ,  and were replaced by ,  and so as to simplify the 

notation. 

Once again, it can be observed that the systems given by (Eq.12) and (Eq.15) and their 

corresponding associated matrices – see (Eq. 13) and (Eq. 16) – are just particular cases if we 

substitute several matrix entries by zero. 

 So, (Eq. 10) and 

 

(19) 

can be considered as the general forms for and F.O.C.K.M matrices. 
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In order to get an general form, let us consider chemical species , ,…  and suppose 

that all the possible first order chemical reactions take place. If any of these reactions does not 

occur, then, the corresponding constant will be considered null. For instance, (Eq. 14) can be 

rewritten as:  

 , ,   

and 

 , with  (20) 

Then, in a general form, corresponding to a F.O.C.K.M., direct reactions involving 

species are:  

 , , ... ,  (21) 

and the opposed reactions are:  

 , , ... ,  (22) 

Consequently, the corresponding O.D.E. for the variation of concentration with time is: 

  

(23) 

or: 

  

(24) 

being 

  (25) 

Following a similar reasoning for species we have: 

  

(26) 

being 

  

(27) 

Then, the general F.O.C.K.M. mathematical model is: 

  (28) 
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and its associated matrix is: 

  (29) 

where all the non-diagonal entries are non-negative and the diagonal elements are 

, so all the matrix columns add to zero. 

To summarize, the characteristics that define these F.O.C.K.M. matrices, are the 

following: 

 

 is a matrix with real entries . 

 The non-diagonal entries are always non-negative numbers, i.e., . 

 The diagonal elements are , is the sum of the non-diagonal entries in the th 

column. 

 

Two obvious corollaries can be easily obtained for this general form: 

 

 . 

  is an eigenvalue of . 

 

The first one is a straightforward conclusion from

(Eq. 30), and the second one is an obvious consequence of having a null determinant. 

To end this section, two more comments can be made. The first one is that if all the 

reactions involved are reversible ones, then:  

 , with  (31) 

 , with  (32) 

So, in this particular case, all the non-diagonal entries are positive and all the diagonal 

ones are negative. These mechanisms where all the reactions are reversible were already 

studied in another paper [12]. 

The second comment is about the previous corollaries, i.e., and is an eigenvalue 

of . Both of them can be obtained because of Lavoisier’s Law of Conservation of Mass. 

This different approach [3] establishes a strong connection with the original modeling 

problem, but in the opposite way, getting a mathematical result because of a chemical law. 
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This inverse modeling approach was widely used in previous books and articles like [3], [4], 

[5], [12], [13] and [14] and it will be utilized one more time in this chapter in order to get 

other general results. 

The Gershgorin Circle Theorem and Its Application  

to F.O.C.K.M. Problems 

The Gershgorin circle theorem was first published by S. A. Gershgorin in 1931 and may 

be used to bind the spectrum of a complex matrix [6]. If with are the 

matrix entries and is the sum of the non-diagonal entries modules in the th 

row, then , the closed disc centered at with radius , is called a Gershgorin disc. 

The theorem states that every eigenvalue of lies within at least one of the Gershgorin discs 

. 

A corollary of this theorem can be obtained by applying the Gershgorin circle theorem to 

. The straightforward conclusion is that all the eigenvalues of lie within the 

Gershgorin discs corresponding to the columns of A. 

For a general F.O.C.K.M. involving species , … the O.D.E. system is like (Eq. 28) and 

the associated matrix is given by (Eq. 29). For instance, for the first column the Gershgorin 

disc is where . Then, the first column Gershgorin disc is and the 

same happens with all the other columns of (Eq. 29), so all the eigenvalues lie in 

 

It is important to note that every disc is centered in a non-positive number 0 is  and 

the circle radius is the absolute value of this number (i.e., ), then all the 

Gershgorin discs are tangent to the imaginary axis. 

One of these circles can be schematized like in Figure 1. 

 

 

Figure 1. The thGershgorin circle . 
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Then, all the Gershgorin circles are contained in the closure of the left semi-plane, , 

i.e.,  

  (33) 

This situation is shown in the next figure:  

 

 

Figure 2. The Gershgorin circles. 

As a consequence of (Eq. 33), the spectrum of is also included in , or in other 

words: 

  (34) 

According to the previous results, it follows that:  

  (35) 

and 

  (36) 

From the O.D.E. solutions point of view, the non-zero eigenvalues give linear 

combinations of functions like:  

  (37) 

depending on the algebraic multiplicity (A.M.) and the corresponding geometric multiplicity 

(G.M.) of the eigenvalue . 

An interesting example of this kind of analysis was included in a previous article [3], 

where a F.O.C.K.M. involving three species was studied and the corresponding O.D.E. 

system was analyzed. In that mechanism, three possible cases were described: three different 

eigenvalues, a double eigenvalue and a simple one, and finally, a unique triple eigenvalue. In 

all those cases the O.D.E. system solutions showed a weak stability, i.e., they were stable 

solutions but not asymptotically stable.  

In order to generalize the previous result already mentioned, to any other F.O.C.K.M., a 

general matrix like (Eq. 29) will be considered. For this general form, above in this chapter it 
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was proved that: (Eq. 35) and (Eq. 36), so there are two different cases to analyze: the 

eigenvalues with a negative real part and the null eigenvalue. 

 

Case 1. is an eigenvalue with  

In this case, if is an eigenvalue with , the O.D.E. solutions are a linear combination 

of , where depends on the A.M. and G.M. 

corresponding to . Taking into account that , being  

, it follows that and the same happens with all the other functions: 

. 

Then, all the O.D.E. solutions associated with the eigenvalue tend to vanish with time, 

independently of corresponding A.M. and/or G.M. 

 

Case 2.  

The null eigenvalue is always present in F.O.C.K.M. problems as it was proved above in 

this chapter. As it was mentioned before, the same result can be obtained from a different 

approach, because of Lavoisier’s Law of Conservation of Mass [3]. 

The O.D.E. system solutions associated with the null eigenvalue are linear combinations 

of the following functions: , or the equivalent: . Then, 

the solutions due to the null eigenvalue are polynomial functions, which grade depends on 

both the A.M. and the G.M., corresponding to . 

It follows straightforward that only if will the polynomial solutions remain bound 

when tends to infinity. 

To sum up the previous results, it can be stated that only the null eigenvalue – and 

particularly, its A.M. and G.M. – is relevant to make predictions about the stability of the 

O.D.E. system solutions. The study for the different cases, corresponding to the eigenvalue 

, will be carried out in the following section of this chapter, through an inverse 

modeling approach. 

The Multiplicities of the Null Eigenvalue 

In the previous sections, a general F.O.C.K.M. was analyzed. For this mechanism, the 

mathematical model is an O.D.E. linear system whose associated matrix has its spectrum in 

the closure of the left semi-plane in the complex numbers. With the purpose of studying the 

stability of the O.D.E. solutions, only the A.M. and the G.M. corresponding to are relevant. 

Taking into account all these facts, the following questions must be considered: 

 

 Is it possible to find a F.O.C.K.M. with a multiple (double, triple, etc.) null 

eigenvalue? 

 If so, is it possible to have a F.O.C.K.M. such that ? 
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In order to answer these questions an inverse modeling approach will be put into practice, 

like in other papers [4-12-13-14] and books [3-5]. 

As W. Blum et al. mentioned, modeling is a process that goes from the real world 

towards mathematics [15]. Examples of this process were presented above when (Eq. 9) was 

proposed as the mathematical model for the F.O.C.K.M. considered in (Eq. 7), or when (Eq. 

12) was obtained from the chemical reactions of (Eq. 11) in the wine/vinegar example, and 

finally when (Eq. 15) was derived from (Eq. 14) in the adsorption of  on surfaces. 

In an inverse modeling approach, O.D.E. systems and/or their associated matrices are the 

inputs and the main objective is to find a chemical reaction or a chemical mechanism that fits 

with the proposed O.D.E. system or its associated matrix. Then, only matrices such as those 

described in the second section of this chapter, e.g., (Eq.29), will be considered,since these 

are the unique matrices that are able to fit with a F.O.C.K.M., as it was proved before. 

In order to answer the first question proposed – about double, triple, etc.,and null 

eigenvalues – the following matrix can be analyzed: 

  

(38) 

It is easy to observe that  has two different eigenvalues: (simple) and (double). 

Therefore, the inverse modeling question is, if it exists, a F.O.C.K.M. that fits with this matrix 

and the answer is affirmative, since the F.O.C.K.M.:  

 ,  (39) 

gives an O.D.E. like: 

  (40) 

and its associated matrix is: 

  

(41) 

This matrix corresponds with the matrix given in (Eq. 38) if and . It is interesting 

to note that this mechanism is like the F.O.C.K.M. corresponding to the adsorption of on 

surfaces (Eq. 14), without the reversible reaction between and . 
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The mechanism can be easily generalized for chemical species  ,  … in the 

following way: , , … , (Eq. 42), then: 

  (43) 

and its associated matrix is: 

  (44) 

 

being  

It is obvious that has two different eigenvalues: (simple) and with 

 

. 

 

In the previous examples was found in (Eq. 10), (Eq. 13) and (Eq. 16), and was found in 

(Eq. 41) and (Eq. 44).  

Now, an interesting question arises: Is it possible to get an intermediate for the null 

eigenvalue? 

Once again the answer is affirmative, for instance if 

  (45) 

Then, algebraic manipulations give: 

 

n
1E 2E

21
12 EE k


31
13 EE k

 
  

   

   






















11

112
2

111312
1

Ek
dt

Ed

Ek
dt

Ed

Ekkk
dt

Ed

n
n

n























00

00

00

1

12

1










nk

k

s





1

1113121

j

jn kkkks 

011  s 02 

10  nAM 



























00

00

00

00

2414

2313

212

211

kk

kk

sk

ks

A

Complimentary Contributor Copy



Victor Martinez-Luaces 338 

 and if we take  

the characteristic polynomial will be , which has two negative 

eigenvalues: (simple), (simple) and (double).  

An inverse modeling approach suggests considering a mechanism with one reversible 

reaction: and four irreversible ones: , , and . 

This F.O.C.K.M can be easily generalized for species , … . If we consider the 

reversible reactions: being and the irreversible ones: being and 

then, the corresponding matrix is: 

  (46) 

In this matrix, if the kinetic constants are well chosen, the first columns will be 

linear independent and . 

The previous examples show that the A.M. corresponding to the null eigenvalue can be 

so, the next question is: can be equal to ? 

In this case, the answer is negative as can be proved by analyzing the trace of . It is 

well known that is by definition the sum of the diagonal entries of and it also equalsthe sum 

of the eigenvalues [16]. So, on one hand we have: (Eq.47), and on the other hand:  

  (48) 

If then and so must be zero. In this theoretical situation and there are no chemical 

reactions or mechanism to be studied. 

Summarizing all these results, (Eq. 49), and can take any of these values.  

This result gives an affirmative answer to the first question posed at the beginning of the 

section. 

In order to respond to the second question, the G.M. corresponding to the eigenvalue 

must be analyzed.  

If only two species are involved, and the must be 1, due to (Eq. 49) and in this case is a 

simple eigenvalue and so, . 

If three chemical compounds are involved in the F.O.C.K.M., the analysis is not as 

simple as in the previous case. In this new situation, and taking into account the result of (Eq. 

49). 
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In the first sub-case, i.e., , once again is a simple eigenvalue and the result is: 

. 

In the second sub-case (i.e., ) a priori the can be 1 or 2. We will see that in 

F.O.C.K.M. matrices it is always 2. For this purpose, let us consider the general matrix: 

  

(50) 

where 

  , and 
 

(51) 

The characteristic polynomial is: 

  

(52) 

which can be written as: 

  
(53) 

In this formula, several coefficients can be easily determined [16]. In fact, it is well 

known that: ,  and , so in this case: 
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(54) 

then: 

  (55) 

In this polynomial, must be zero in order to have . Developing the 

determinant in (Eq. 52) it is easy to obtain:  

  (56) 

and if must be zero, then:  

  (57) 
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Finally, combining (Eq. 51) and (Eq. 57) the result is: 

 

  (58) 

The constants are non-negative , therefore, all the products included in (Eq. 58) 

must be zero. In order to analyze all the possibilities, the tree diagram of figure 3 will be 

followed. 

 

Figure 3. Tree diagram for the analysis of possible cases in (Eq. 58). 

Case I.  

If and all the products in (Eq. 58) must be zero, then: , and , and this result 

implies that . In fact, if then, the whole mechanism will be only: and 

species is not involved in the F.O.C.K.M. 

So, here we have: , and . Moreover, being the second 

product in (Eq. 58) and , then and the F.O.C.K.M. is:

, . This case was already considered (Eq. 39-40) and the 

associated matrix was: 

  

(41) 

This matrix has a null double eigenvalue, such that the canonic vectors: and 

are associated eigenvectors and so, . 

 

Case II.  

If then may be positive (sub-case IIa) or (sub-case IIb). Both sub-cases will be 

analyzed in the following paragraphs. 

Sub-case IIa. and  

If the constant is positive, then since all products in (Eq. 58) must be zero. The remaining 

mechanism is given only by: , (Eq. 59) and the associated matrix is: 
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(60) 

It is easy to observe that the canonic vectors: and are eigenvectors associated 

with the null eigenvalue and so, once again: . 

Sub-case IIb. and 
 

If then (Eq. 58) is converted into: (Eq. 61), where as always, . 

It is important to note that if then , since all products in (Eq. 61) – 

particularly the first and the last products – must be zero. In this situation,  and 

, so the species is not involved in the mechanism. Then, if three chemical 

substances are considered, must be zero and (Eq. 61) is converted into:  

  (62) 

We already have  and , so must be positive (if not, the species  is 

not part of the F.O.C.K.M.). Then, it follows from (Eq. 62) that . 

To summarize this sub-case, we have , ,  and the remaining 

mechanism is , (Eq. 63), and the associated matrix is: 

  

(64) 

For this matrix, it is easy to observe that the canonic vectors and are 

eigenvectors associated with the null eigenvalue and we have again: , 

like in the previous sub-case. 

As a summary of this section, in all mechanisms involving two or three species, the A.M. 

and the G.M., corresponding to the null eigenvalue are the same. The consequences of this 

result on the stability of the O.D.E. solutions and its possible generalizations, among other 

conclusions, will be the core of the next section. 

Conclusion 

In the preceding sections, a general form for matrices associated to F.O.C.K.M. problems 

was obtained.  

Because of this structure, several properties were proved. Particularly, for a general 

matrix , corresponding to a given F.O.C.K.M., the following statements were 

demonstrated: 
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   
  

If is an eigenvalue of , then  

  
if and only if  

  For the null eigenvalue is and can take any of these possible values. 

 

If two or three chemical substances are considered, the matrix that corresponds to this 

F.O.C.K.M. verifies that . 

This algebraic result has an analytical corollary: the O.D.E. solutions for F.O.C.K.M. 

involving two or three species are always stable, but not asymptotically. This weak stability 

has an important chemical consequence, since it implies that small errors in the initial 

concentration measurements will remain bound as the reactions take place, but they will not 

tend to disappear when . 

If more than three substances are involved in the F.O.C.K.M., this weak stability result 

can easily be generalized in the particular case where only reversible reactions are considered 

[12].  

Other qualitative results can be obtained by analyzing the form of the solutions for the 

O.D.E. linear system. For instance, the existence and number of inflexion points in curves of 

vs. were previously obtained in [3], among other conclusions.  

It is important to note that the cases studied in this chapter – i.e., F.O.C.K.M. involving 

two or three species – are especially important since they are the most common situations in 

chemical kinetics problems and they appear regularly in the corresponding mathematical 

models. 

Finally, the study of other stability properties and qualitative results, for any number of 

reactants and for any kind of chemical reactions (reversible, irreversible, second and third 

order reactions, etc.), represents a challenging problem and an opportunity for further 

research in this area. 
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